3.解题过程中能分析和运用圆的几何性质. 自学评价 查看更多

 

题目列表(包括答案和解析)

(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)在曲线y=x-
2
x
上存在两个不同点关于直线y=x对称,求出其坐标;若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取a=
1
16
a=
2
2
加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

在海岸A处,发现北偏东45°方向,距离A为(
3
-1)
n mile的B处有一艘走私船,在A处北偏西75°方向,距离A为2n mile的C处有一艘缉私艇奉命以10
3
n mile/h的速度追截走私船,此时,走私船正以10n mile/h的速度从B处向北偏东30°方向逃窜,问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间.(本题解题过程中请不要使用计算器,以保证数据的相对准确和计算的方便)

查看答案和解析>>

(2006•浦东新区模拟)(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的取值范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

某同学用《几何画板》研究椭圆的性质:打开《几何画板》软件,绘制某椭圆C1
x2
a2
+
y2
b2
=1,在椭圆上任意画一个点S,度量点S的坐标(xs,ys),如图1.
(1)拖动点S,发现当xs=
2
时,ys=0;当xs=0时,ys=1,试求椭圆C1的方程;
(2)该同学知圆具有性质:若E为圆O:x2+y2=r2(r>0)的弦AB的中点,则直线AB的斜率kAB与直线OE的斜率kOE的乘积kAB•kOE为定值.该同学在椭圆上构造两个不同的点A、B,并构造直线AB,再构造AB的中点E,经观察得:沿着椭圆C1,无论怎样拖动点A、B,椭圆也具有此性质.类比圆的这个性质,请写出椭圆C1的类似性质,并加以证明;
(3)拖动点A、B的过程中,如图2发现当点A与点B在C1在第一象限中的同一点时,直线AB刚好为C1的切线l,若l分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值.

查看答案和解析>>

某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背。为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验。

两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不含右端点)

(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;

(2)从乙组准确回忆因结束在[12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量X,求X分布列及数学期望;

(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好? 计算并说明理由。

 

查看答案和解析>>


同步练习册答案