题目列表(包括答案和解析)
(本小题满分14分)
已知数列{an},且x=是函数f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求数列{an}的通项公式;
(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;
(3)若cn=,证明:( n∈N﹡).
(本小题满分14分)
已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;
(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];
(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.
(本小题满分14分)
已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;
(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];
(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.
(本小题满分14分)
已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;
(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];
(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.
(本小题满分14分)
已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;
(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];
(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com