如图, 在三棱柱ABC-A1B1C1中, 点E.D分别是B1C1与BC的中点. 求证: 平面A1EB//平面ADC1 学生质疑 教师释疑 拓展延伸 求证:一条直线和两个平行平面相交.这条直线和这两个平面所成的角相等. 已知: 求证: 证明: 查看更多

 

题目列表(包括答案和解析)

如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且数学公式
(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

如图,三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求证:C1E∥平面ADF;
(2)若点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?

查看答案和解析>>

如图,三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求证:C1E∥平面ADF;
(2)若点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?

查看答案和解析>>

如图,三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求证:C1E∥平面ADF;
(2)若点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?

查看答案和解析>>

如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且
(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>


同步练习册答案