求方程(其中为自然数)的所有小于100的的正整数解. [解] 算法如下: y←0 x←0 While x<100 x←5y+3 Print x y←y+1 End While 查看更多

 

题目列表(包括答案和解析)

(08年莆田四中二模理)(14分)已知函数图象上的两点,横坐标为的点满足为坐标原点)。

(1)求证:为定值;

(2)若

①求

②若其中为数列的前n项和,若对一切都成立,试求的取值范围。

查看答案和解析>>

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x},即 {x}=m.在此基础上有函数f(x)=|x-{x}
.
 
(x∈

(1)求f(4),f(-
1
2
),f(-8.3)
的值;
(2)对于函数f(x),现给出如下一些判断:
①函数y=f(x)是偶函数;
②函数y=f(x)是周期函数;
③函数y=f(x)在区间(-
1
2
1
2
]
上单调递增;
④函数y=f(x)的图象关于直线x=k+
1
2
 &(k∈Z)
对称;
请你将以上四个判断中正确的结论全部选择出来,并选择其中一个加以证明;
(3)若-206<x≤207,试求方程f(x)=
9
23
的所有解的和.

查看答案和解析>>

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x},即 {x}=m.在此基础上有函数f(x)=|x-{x}
.
 
(x∈

(1)求f(4),f(-
1
2
),f(-8.3)
的值;
(2)对于函数f(x),现给出如下一些判断:
①函数y=f(x)是偶函数;
②函数y=f(x)是周期函数;
③函数y=f(x)在区间(-
1
2
1
2
]
上单调递增;
④函数y=f(x)的图象关于直线x=k+
1
2
 &(k∈Z)
对称;
请你将以上四个判断中正确的结论全部选择出来,并选择其中一个加以证明;
(3)若-206<x≤207,试求方程f(x)=
9
23
的所有解的和.

查看答案和解析>>

已知函数f(x)=x3+ax2+bx+3的单调递减区间为(-
1
3
,1)
,单调增区间为(-∞,-
1
3
)
和(1,+∞).
(1)求f(x)的解析式
(2)若t∈R,试讨论关于x得方程f(x)=lnx+(2e-1)x2-(t+1)x+3的实数根的个数(e为自然数的底)

查看答案和解析>>

设点P(x,y)(y≥0)为平面直角坐标系xOy中的一个动点(其中O为坐标原点),点P到定点M(0,
1
2
)
的距离比点P到x轴的距离大
1
2

(1)求点P的轨迹方程;
(2)若直线l:y=kx+1与点P的轨迹相交于A、B两点,且|AB|=2
6
,求k的值.
(3)设点P的轨迹是曲线C,点Q(1,y0)是曲线C上的一点,求以Q为切点的曲线C 的切线方程.

查看答案和解析>>


同步练习册答案