1.等差数列的通项公式: ①普通式:, ②推广式: , ③变式:, ,, 注:等差数列通项公式的特征:等差数列的通项公式为关于项数n的次数不高于一次的多项式函数即an=An+B(若{an}为常数列时,A=0). 查看更多

 

题目列表(包括答案和解析)

(2011•普宁市模拟)已知数列{am}是首项为a,公差为b的等差数列,{bn}是首项为b,公比为a的等比数列,且满足a1<b1<a2<b2<a3,其中a、b、m、n∈N*.
(Ⅰ)求a的值;
(Ⅱ)若数列{1+am}与数列{bn}有公共项,将所有公共项按原顺序排列后构成一个新数列{cn},求数列{cn}的通项公式;
(Ⅲ)记(Ⅱ)中数列{cn}的前项之和为Sn,求证:
9
S1S2
+
9
S2S3
+
9
S3S4
+…+
9
SnSn+1
19
42
(n≥3)

查看答案和解析>>

(2009•普陀区一模)已知数列{an}中,a1=0,an+1=
1
2-an
,n∈N*
(1)求证:{
1
an-1
}
是等差数列;并求数列{an}的通项公式;
(2)假设对于任意的正整数m、n,都有|bn-bm|<ω,则称该数列为“ω域收敛数列”.试判断:数列bn=an•(-
4
5
)n
,n∈N*是否为一个“
2
3
域收敛数列”,请说明你的理由.

查看答案和解析>>

(2009•普陀区一模)已知数列{an}中,a1=0,an+1=
1
2-an
,n∈N*
(1)求证:{
1
an-1
}
是等差数列;并求数列{an}的通项公式;
(2)设bn=an•(
9
10
)n
,n∈N*,试证明:对于任意的正整数m、n,都有|bn-bm|<
1
2

查看答案和解析>>


同步练习册答案