2.分类讨论不要重复和遗漏 追踪训练二 查看更多

 

题目列表(包括答案和解析)

已知四边形ABCD的顶点A(mn),B(5,-1),C(4,2),D(2,2),求mn的值,使四边形ABCD为直角梯形.

[分析] 分类讨论直角梯形ABCD的腰和底,利用直线平行和垂直的斜率关系解决.

查看答案和解析>>

已知直线y=k(x-3)与双曲线
x2
m
-
y2
27
=1
,有如下信息:联立方程组
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分类讨论:
(1)当A=0时,该方程恒有一解;
(2)当A≠0时,△=B2-4AC≥0恒成立.在满足所提供信息的前提下,双曲线离心率的取值范围是(  )
A、[9,+∞)
B、(1,9]
C、(1,2]
D、[2,+∞)

查看答案和解析>>

检验两个分类是否相关时,可以用        粗略地判断两个分类变量是否有关系.(  )

A.散点图

B.三维柱形图和二维条形图

C.独立性检验

D.以上全都可以

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

检验两个分类是否相关时,可以用        粗略地判断两个分类变量是否有关系.(  )

A.散点图

B.三维柱形图和二维条形图

C.独立性检验

D.以上全都可以

查看答案和解析>>


同步练习册答案