(二)能力训练点 在与椭圆的类比中获得双曲线的知识.从而培养学生分析.归纳.推理等能力. 查看更多

 

题目列表(包括答案和解析)

已知椭圆的方程为双曲线的两条渐近线为,过椭圆的右焦点作直线,使得于点,又交于点与椭圆的两个交点从上到下依次为(如图).

 (1)当直线的倾斜角为,双曲线的焦距为8时,求椭圆的方程;

(2)设,证明:为常数.

 

 

 

查看答案和解析>>

已知椭圆的方程为双曲线的两条渐近线为,过椭圆的右焦点作直线,使得于点,又交于点与椭圆的两个交点从上到下依次为(如图).

 (1)当直线的倾斜角为,双曲线的焦距为8时,求椭圆的方程;

(2)设,证明:为常数.

 

 

 

查看答案和解析>>

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(2,0),直线l:y=1,过M任作一条不与y轴重合的直线l1与椭圆相交于A、B两点,过AB的中点N作直线l2与y轴交于点P,D为N在直线l上的射影,若|ND|、
1
2
|AB|
、|MP|成等比数列,求直线l2的斜率的取值范围.

查看答案和解析>>

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

(2012•芜湖二模)如图,直角坐标系XOY中,点F在x轴正半轴上,△OFG的面积为S.且
OF
FG
=1
,设|
OF
|=c(c≥2)
S=
3
4
c

(1)以O为中心,F为焦点的椭圆E经过点G,求点G的纵坐标.
(2)在(1)的条件下,当|
OG
|
取最小值时,求椭圆E的标准方程.
(3)在(2)的条件下,设点A、B分别为椭圆E的左、右顶点,点C是椭圆的下顶点,点P在椭圆E上(与点A、B均不重合),点D在直线PA上,若直线PB的方程为,且
AP
CD
=0
,试求CD直线方程.

查看答案和解析>>


同步练习册答案