题目列表(包括答案和解析)
阅读下面的解题过程,然后解答后面的问题.
题目:如图(1),已知正方形ABCD中,点M是AB的中点,点E是AB延长线上的一点,MN⊥DM交∠CBE的平分线BN于点N.试说明MD=MN.
解:在AD上取一点F,使AF=AM,连结MF.
因为ABCD是正方形,
所以DF=MB,∠1+∠AMD=90°.
因为DM⊥MN,
所以∠AMD+∠2=90°.
所以∠1=∠2.
因为BN平分∠CBE,
所以∠MBN=135°=∠DFM.
所以△DFM≌△MBN.
所以DM=MN.
(1)在上述说理过程中,“点M是AB的中点”这个条件没有用到,若将这个条件改为“点M是AB上的任意一点”,或“点M是AB延长线上的任意一点”,或“点M是BA延长线上的任意一点”,则结论“DM=MN”还成立吗?请说明理由;
(2)如图(2),在正三角形ABC中,若AE=CD,则∠BFE=60°;如图(3),在正方形ABCD中,若DE=CF,则∠AGF=90°.这里的两个结论“∠BFE=60°”和“∠AGF=90,分别与题目的背景条件“正三角形ABC”和“正方形ABCD”有关.你能否改编一道题目,改变上述题目的背景“正方形ABCD”,并相应改变条件“MN⊥DM”,而其余条件与结论不变?请说明所编题目的正确性.
(2003 湖北武汉)如图a,已知、外切于点P,A是上一点,直线AC切于点C交于点B,直线AP交于点D.
(1)求证:PC平分∠BPD.
(2)将“、外切于点P”改为“、内切于点P”(见图b),其他条件不变.(1)中的结论是否仍然成立?画出图形并证明你的结论.
如图10,已知△BCE、△ADC都是等边三角形。求证:AE=BD。(5分)
如图10,已知△BCE、△ADC都是等边三角形。求证:AE=BD。(5分)
如图10,已知⊙O的直径AB垂直于弦CD,垂足为E,F为CD延长线上一点,AF交⊙O于点G. 求证:AC2=AG·AF
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com