周期性的定义:存在非零常数.使对任意的(D为定义域)有成立. 特别注意:讨论函数问题不要忘了定义域! 查看更多

 

题目列表(包括答案和解析)

对于函数,定义:若存在非零常数,使函数对定义域内的任意实数,都满足则称函数是准周期函数,常数称为函数的一个准周期.如函数是以为一个准周期且的准周期函数.

    (1) 试判断是否是函数的准周期,说明理由;

(2)证明函数是准周期函数,并求出它的一个准周期和相应的的值;

(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图像.

查看答案和解析>>

对于函数y=f(x),定义:若存在非零常数M、T,使函数f(x)对定义域内的任意实数x,都满足f(x+T)-f(x)=M,则称函数y=f(x)是准周期函数,常数T称为函数y=f(x)的一个准周期.如:函数f(x)=2x+sinx是以T=2π为一个准周期且M=4π的准周期函数.

(1)试判断2π是否是函数f(x)=sinx的准周期,说明理由;

(2)证明函数f(x)=x+(-1)x(x∈Z)是准周期函数,并求出它的一个准周期和相应的M的值;

(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图像

查看答案和解析>>

对于函数y=f(x),定义:若存在非零常数M、T,使函数f(x)对定义域内的任意实数x,都满足f(x+T)-f(x)=M,则称函数y=f(x)是准周期函数,常数T称为函数y=f(x)的一个准周期.如函数f(x)=x+(-1)x(x∈Z)是以T=2为一个准周期且M=2的准周期函数.
(1)试判断2π是否是函数f(x)=sinx的准周期,说明理由;
(2)证明函数f(x)=2x+sinx是准周期函数,并求出它的一个准周期和相应的M的值;
(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图象.

查看答案和解析>>

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>


同步练习册答案