题目列表(包括答案和解析)
已知数列满足(I)求数列的通项公式;
(II)若数列中,前项和为,且证明:
【解析】第一问中,利用,
∴数列{}是以首项a1+1,公比为2的等比数列,即
第二问中,
进一步得到得 即
即是等差数列.
然后结合公式求解。
解:(I) 解法二、,
∴数列{}是以首项a1+1,公比为2的等比数列,即
(II) ………②
由②可得: …………③
③-②,得 即 …………④
又由④可得 …………⑤
⑤-④得
即是等差数列.
已知递增等差数列满足:,且成等比数列.
(1)求数列的通项公式;
(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为,
由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。
解:(1)设数列公差为,由题意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等价于,
当时,;当时,;
而,所以猜想,的最小值为. …………8分
下证不等式对任意恒成立.
方法一:数学归纳法.
当时,,成立.
假设当时,不等式成立,
当时,, …………10分
只要证 ,只要证 ,
只要证 ,只要证 ,
只要证 ,显然成立.所以,对任意,不等式恒成立.…14分
方法二:单调性证明.
要证
只要证 ,
设数列的通项公式, …………10分
, …………12分
所以对,都有,可知数列为单调递减数列.
而,所以恒成立,
故的最小值为.
已知数列中,,,数列中,,且点在直线上。
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若,求数列的前项和;
【解析】第一问中利用数列的递推关系式
,因此得到数列的通项公式;
第二问中,在 即为:
即数列是以的等差数列
得到其前n项和。
第三问中, 又
,利用错位相减法得到。
解:(1)
即数列是以为首项,2为公比的等比数列
……4分
(2)在 即为:
即数列是以的等差数列
……8分
(3) 又
① ②
①- ②得到
已知正项数列的前n项和满足:,
(1)求数列的通项和前n项和;
(2)求数列的前n项和;
(3)证明:不等式 对任意的,都成立.
【解析】第一问中,由于所以
两式作差,然后得到
从而得到结论
第二问中,利用裂项求和的思想得到结论。
第三问中,
又
结合放缩法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正项数列,∴ ∴
又n=1时,
∴ ∴数列是以1为首项,2为公差的等差数列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 对任意的,都成立.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com