题目列表(包括答案和解析)
(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”.
(Ⅱ)观察下图:
根据上图,试推测曲线的“上夹线”的方程,并给出证明.
(14分)已知数列中,当且有:
。
(Ⅰ)设数列满足,证明散列为等比数列,并求数列的通项公式;
(Ⅱ)记,规定,求数列的前项和。
(本题满分14分)
设数列的前n项和为,且,其中p是不为零的常数.
(1)证明:数列是等比数列;
(2)当p=3时,若数列满足,,求数列的通项公式.
本小题满分14分)已知正项数列的前项和为,且满足.
(I) 求数列的通项公式;
(Ⅱ)设数列满足,且数列的前项和为,
求证:数列为等差数列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com