设 数列满足: 且 (1) 求证数列是等比数列, (2) 求数列的通项公式. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意xR都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”.

(Ⅱ)观察下图:

           

    根据上图,试推测曲线的“上夹线”的方程,并给出证明.

查看答案和解析>>

(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意xR都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”.
(Ⅱ)观察下图:
          
根据上图,试推测曲线的“上夹线”的方程,并给出证明.

查看答案和解析>>

(14分)已知数列中,有:

(Ⅰ)设数列满足,证明散列为等比数列,并求数列的通项公式;

(Ⅱ)记,规定,求数列的前项和

 

查看答案和解析>>

(本题满分14分)
设数列的前n项和为,且,其中p是不为零的常数.
(1)证明:数列是等比数列;
(2)当p=3时,若数列满足,求数列的通项公式.

查看答案和解析>>

本小题满分14分)已知正项数列的前项和为,且满足

(I) 求数列的通项公式;

(Ⅱ)设数列满足,且数列的前项和为

求证:数列为等差数列.

 

查看答案和解析>>


同步练习册答案