若分别是⊿的三边上的动点.且它们在初始时刻时分别从 出发.各以一定速度匀速沿各边分别向移动. 当时.分别到达. 求证:的任一时刻.⊿的重心不变 . 天府数学 P135 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

已知点的坐标分别是,直线相交于点,且它们的斜率之积为

(1)求点轨迹的方程;

(2)若过点的直线与(1)中的轨迹交于不同的两点,试求面积的取值范围(为坐标原点).

 

查看答案和解析>>

 如图是单位圆上的动点,且分别在第一,二象限.是圆与轴正半轴的交点,为正三角形. 若点的坐标为.  记

(Ⅰ)若点的坐标为,求的值; 

(Ⅱ)求的取值范围.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小题共14分)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点 任作一条与轴不垂直的直线,它与曲线交于两点。

   (1)求曲线的方程;

   (2)试证明:在轴上存在定点,使得总能被轴平分

查看答案和解析>>


同步练习册答案