16.两辆游戏赛车a.b在两条平行的直车道上行驶.t=0时两车都在同一计时处.此时比赛开始.它们在四次比赛中的v-t图如图所示.哪些图对应的比赛中.有一辆赛车追上了另一辆: 查看更多

 

题目列表(包括答案和解析)

设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.
(1)求证:函数y=f(x)与y=g(x)的图象有两个交点;
(2)设f(x)与g(x)的图象交点A、B在x轴上的射影为A1、B1,求|A1B1|的取值范围;
(3)求证:当x≤-
3
时,恒有f(x)>g(x).

查看答案和解析>>

已知抛物线的顶点在坐标原点O,焦点F在x轴正半轴上,倾斜角为锐角的直线l过F点,设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,
MF
FB
(λ>0)
(1)若λ=1,求直线l斜率
(2)若点A、B在x轴上的射影分别为A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差数列求λ的值
(3)设已知抛物线为C1:y2=x,将其绕顶点按逆时针方向旋转90°变成C1′.圆C2:x2+(y-4)2=1的圆心为点N.已知点P是抛物线C1′上一点(异于原点),过点P作圆C2的两条切线,交抛物线C′1于T,S,两点,若过N,P两点的直线l垂直于TS,求直线l的方程.

查看答案和解析>>

给出4个命题:
(1)设椭圆长轴长度为2a(a>0),椭圆上的一点P到一个焦点的距离是
2
3
a
,P到一条准线的距离是
8
3
a
,则此椭圆的离心率为
1
4

(2)若椭圆
x2
a2
+
y2
b2
=1
(a≠b,且a,b为正的常数)的准线上任意一点到两焦点的距离分别为d1,d2,则|d12-d22|为定值.
(3)如果平面内动点M到定直线l的距离与M到定点F的距离之比大于1,那么动点M的轨迹是双曲线.
(4)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为A1、B1,则FA1⊥FB1
其中正确命题的序号依次是
(2)(4)
(2)(4)
.(把你认为正确的命题序号都填上)

查看答案和解析>>

(2008•虹口区二模)已知一次函数f(x)=ax+b,二次函数g(x)=ax2+bx+c,a>b>c,且a+b+c=0
(1)证明:y=f(x)与y=g(x)图象有两个不同的交点A和B
(2)若A1、B1分别是点A、B在x轴上的射影,求线段A1B1长度的取值范围
(3)证明:当x≤-
3
时,恒有f(x)<g(x)

查看答案和解析>>

给定下列四个命题:
①a,b是两异面直线,那么经过直线a可以作无数个与直线b平行的平面.
②α,β是任意两个平面,那么一定存在平面满足α⊥γ且β⊥γ.
③a,b是长方体互相平行的两条棱,将长方体展开,那么在展开图中,a、6对应的线段所在直线互相平行.
④已知任意直线a和平面a,那么一定荏在平面γ,满足α?γ且α⊥γ.
其中,为真命题的是(  )

查看答案和解析>>


同步练习册答案