18.]解法一:(I)由已知 ∴PG=4, 如图所示.以G点为原点建立空间直角坐标系 o-xyz.则 B.P. 故E, . . ∴异面直线GE与PC所成的角的余弦值为.--------4分 (II)平面PBG的单位法向量. . ∴点D到平面PBG的距离为.--------8分 . 在平面PGC内过F点作FM⊥GC.M为垂足.则. .--------14分 解法二: (I)由已知 . ∴PG=4. 在平面ABCD内.过C点作CH//EG交AD于H.连结PH.则∠PCH就是异面直线GE与PC所成的角. 在△PCH中.. 由余弦定理得.cos∠PCH=. ∴异面直线GE与PC所成的角的余弦值为. (II)∵PG⊥平面ABCD.PG平面PBG ∴平面PBG⊥平面ABCD. 在平面ABCD内.过D作DK⊥BG.交BG延长线于K. 则DK⊥平面PBG ∴DK的长就是点D到平面PBG的距离. . 在△DKG.DK=DGsin45°= . ∴点D到平面PBG的距离为. (III)在平面ABCD内.过D作DM⊥GC.M为垂足.连结MF.又因为DF⊥GC. ∴GC⊥平面MFD. ∴GC⊥FM. 由平面PGC⊥平面ABCD.∴FM⊥平面ABCD ∴FM//PG, 由GM⊥MD得:GM=GD·cos45°=. . ∴x=.解得d=∈(0.). [链接高考]本题主要考查四棱锥的有关知识,以及求异面直线所成角的问题,以及分析问题与解决问题的能力.简单几何体是立体几何解答题的主要载体,特别是棱柱和棱锥. 查看更多

 

题目列表(包括答案和解析)

已知过点的动直线与抛物线相交于两点.当直线的斜率是时,

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

【解析】(1)B,C,当直线的斜率是时,

的方程为,即                                (1’)

联立  得         (3’)

由已知  ,                    (4’)

由韦达定理可得G方程为            (5’)

(2)设,BC中点坐标为               (6’)

 由       (8’)

    

BC中垂线为             (10’)

                  (11’)

 

查看答案和解析>>

(本小题满分14分)

某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元,在演出过程中穿插抽奖活动,第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动,第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数,如果则电脑显示“中奖”,抽奖者获得9000元奖金;否则若电脑显示“谢谢”,则不中奖。

(I)已知小曹在第一轮抽奖中被抽中,求小曹在第二轮抽奖中获奖的概率;

(II)若小叶参加了此次活动,求小叶参加此次活动收益的期望;

(III)若此次募捐除奖品和奖金外,不计其它支出,该机构想获得96万元的慈善款,问该慈善机构此次募捐是否能达到预期目标。

 

查看答案和解析>>

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。

【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得

第二问中可能的取值为0,1,2,3  ,       

 , 

从而得到分布列和期望值

解:(I)由已知条件得 ,即,则的值为

 (Ⅱ)可能的取值为0,1,2,3  ,       

 , 

   的分布列为:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>

某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.
(I)已知两组技工在单位时间内加工的合格零件数的平均数都为10,分别求出m,n的值;
(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差
S
2
S
2
,并由此分析两组技工的加工水平;
(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“待整改”,求该车间“待整改”的概率.(注:方差,s2=
1
n
[(x1-
.
x
)2+(x2-
.
x
)2+…+(xn-
.
x
)2
,其中
.
x
为数据x1,x2,…,xn的平均数)

查看答案和解析>>


同步练习册答案