12.数列{an}的通项an =2n+1.则由bn=(n∈N*).所确定的数列{bn}的前n项和是 ( ) A.n(n+1) B. C. D. 查看更多

 

题目列表(包括答案和解析)

数列{an}的通项公式an=2n+1,则由bn(n∈N*),所确定的数列{bn}的前n项和是

[  ]

A.n(n+1)

B.

C.

D.

查看答案和解析>>

13、已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n
则其前n项和Tn=
(n2-2n+3)•2n+1-6

查看答案和解析>>

数列{an}的前n项和为Sn,若a1=2且Sn=Sn-1+2n(n≥2,n∈N*).
(Ⅰ)求Sn
(Ⅱ)是否存在等比数列{bn}满足b1=a1,b2=a3,b3=a9?若存在,则求出数列{bn}的通项公式;若不存在,则说明理由.

查看答案和解析>>

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n
则其前n项和Tn=______.

查看答案和解析>>

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.类比推广以上方法,若数列{bn}的通项公式为bn=n2•2n
则其前n项和Tn=   

查看答案和解析>>


同步练习册答案