设等差数列前项和满足.且.S2=6,函数.且 (1)求A, (2)求数列的通项公式, (3)若 广东省广州市2010届高考调研数学试题 查看更多

 

题目列表(包括答案和解析)

(09年湖南十二校理)(13分)设等差数列项和满足,且,S2=6;函数,且

   (1)求A; 

(2)求数列的通项公式;

   (3)若

查看答案和解析>>

设等差数列{an},{bn}前n项和Sn,Tn满足
Sn
Tn
=
An+1
2n+7
,且
a3
b4+b6
+
a7
b2+b8
=
2
5
,S2=6;函数g(x)=
1
2
(x-1)
,且cn=g(cn-1)(n∈N,n>1),c1=1.
(1)求A;
(2)求数列{an}及{cn}的通项公式;
(3)若dn=
an(n为奇数)
cn(n为偶数)
,试求d1+d2+…+dn

查看答案和解析>>

设等差数列{an},{bn}前n项和Sn,Tn满足,且,S2=6;函数,且cn=g(cn-1)(n∈N,n>1),c1=1.
(1)求A;
(2)求数列{an}及{cn}的通项公式;
(3)若

查看答案和解析>>

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.

【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1.     第二问中,,由第一问中知道,然后利用裂项求和得到Tn.

解: (Ⅰ) 设:{an}的公差为d,

因为解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因为……………8分

 

查看答案和解析>>

(2013•东莞一模)设等差数列{an},{bn}前n项和Sn,Tn满足
Sn
Tn
=
An+1
2n+7
,且
a3
b4+b6
+
a7
b2+b8
=
2
5
,S2=6;函数g(x)=
1
2
(x-1)
,且cn=g(cn-1)(n∈N,n>1),c1=1.
(1)求A;
(2)求数列{an}及{cn}的通项公式;
(3)若dn=
an(n为奇数)
cn(n为偶数)
,试求d1+d2+…+dn

查看答案和解析>>


同步练习册答案