题目列表(包括答案和解析)
(本题满分14分)
已知四边形ABCD是正方形,P是平面ABCD外一点,且PA=PB=PC=PD=AB=2,是棱的中点.建立适当的空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:;
(2) 求证:;
(3)求直线与直线所成角的余弦值.
(本题满分14分)
已知四边形ABCD是正方形,P是平面ABCD外一点,且PA=PB=PC=PD=AB=2,是棱的中点.建立适当的空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:;
(2) 求证:;
(3)求直线与直线所成角的余弦值.
已知函数 R).
(Ⅰ)若 ,求曲线 在点 处的的切线方程;
(Ⅱ)若 对任意 恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当时,.
因为切点为(), 则,
所以在点()处的曲线的切线方程为:
第二问中,由题意得,即即可。
Ⅰ)当时,.
,
因为切点为(), 则,
所以在点()处的曲线的切线方程为:. ……5分
(Ⅱ)解法一:由题意得,即. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为,所以恒成立,
故在上单调递增, ……12分
要使恒成立,则,解得.……15分
解法二: ……7分
(1)当时,在上恒成立,
故在上单调递增,
即. ……10分
(2)当时,令,对称轴,
则在上单调递增,又
① 当,即时,在上恒成立,
所以在单调递增,
即,不合题意,舍去
②当时,, 不合题意,舍去 14分
综上所述:
|
|
|
|
5 |
5 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com