A. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2
3
,若∠CAP=30°,则⊙O的直径AB=
 

C.(极坐标系与参数方程选做题)若圆C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ为参数)
与直线x-y+m=0相切,则m=
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

 

一、选择题:(本大题共12小题,每小题5分,共60分)

20080801

2. 提示: 故选D

3. 提示:已知得d=3,a5=14,=3a5=42.故选B

4. 提示: 判断cosα>0,sinα<0,数形结合.故选B

5. 提示: 设,则,则的图象按向量平移后的图象的函数表达式为:,即,故选D。

20090505

7. 提示: 当x>0时,的图像相同,故可排除(A)、(C)、(D).故选B

8.=5,得3n=5r+10 , 当r=1时,n=5.故选C

9. 提示由,得,所以,  点P的轨迹是圆(除去与直线AB的交点).故选B

10.如图, 由椭圆及第一定义可得,△ABF的周长为AB+

AF+BF=AB+2a-AF1+BF=4+AB-AF1)+BF≤4+BF1+

BF=4+4=8.当且仅当三点AF1B共线时,不等式取  

等号,故选B.

11.提示: 易知数列{an}是以3为周期的数列,a1=2,  a2 ,   a3= ,  a4 =2, 

a2009=2故选B

12.提示: ∵f ′(x)=g′(x), ∴fx),gx)可以是同一函数,或者仅是常数项不同的两个函数, 而得

fx)-gx)是常数函数, 即B为最佳答案,故选B.

二、填空题:(本大题共4小题,每小题5分,共20分)

13.9;提示:  Tr+1=(xn-r(-r,由题意知:-+=27n=9

∴展开式共有10项,二项式系数最大的项为第五项或第六项,故项的系数最大的项为第五项。

                    

14. ;矩形;若  则以 为邻边的平行四边形对角线相等,所以此四边形必为矩形,可见的夹角为

15. ;提示: P=1-=

16.提示:当直角三角形的斜边垂直与平面时,所求面积最大。

三、解答题:(本大题共6小题,共70分)

17.(本大题10分)(1)不是,假设上的生成函数,则存在正实数使得恒成立,令,得,与矛盾,

所以函数一定不是上的生成函数…………5分

   (2)设,因为

所以,当且仅当时等号成立,

    而

      ………………………10分

18.(Ⅰ)连接A1C.

∵A1B1C1-ABC为直三棱柱,

∴CC1⊥底面ABC,

∴CC1⊥BC.

       ∵AC⊥CB,

       ∴BC⊥平面A1C1CA. ……………1分

       ∴与平面A1C1CA所成角,

.

与平面A1C1CA所成角为.…………4分

   (Ⅱ)分别延长AC,A1D交于G. 过C作CM⊥A1G 于M,连结BM,

       ∵BC⊥平面ACC­1A1

∴CM为BM在平面A1C1CA内的射影,

       ∴BM⊥A1G

∴∠CMB为二面角B―A1D―A的平面角,

       平面A1C1CA中,C1C=CA=2,D为C1C的中点,

       ∴CG=2,DC=1 在直角三角形CDG中,

.

       即二面角B―A1D―A的大小为.……………………8分

   (Ⅲ)取线段AC的中点F,则EF⊥平面A1BD.

证明如下:

∵A1B1C1―ABC为直三棱柱,

∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,

∴B1C1⊥平面A1C1CA,

∵EF在平面A1C1CA内的射影为C1F

当F为AC的中点时,

C1F⊥A1D,∴EF⊥A1D.

同理可证EF⊥BD,

∴EF⊥平面A1BD.……………………12分

19.解:(1)从这5名学生中选出2名学生的方法共有种所选2人的血型为O型或A型的的情况共有种故所求概率为 ?…………6分

   (2) 至少有2名学生符合献血条件的对立事件是至多1人符合献血条件

则所求概率为 …………12分

20.解:(Ⅰ) 设C(x, y),

, ,  

,

∴ 由定义知,动点C的轨迹是以A、B为焦点,长轴长为的椭圆除去与x轴的两个交点.

.

.

∴ W:   .………………… 2分

   (Ⅱ) 设直线l的方程为

代入椭圆方程,得.

整理,得.         ①………………………… 5分

因为直线l与椭圆有两个不同的交点P和Q等价于

解得.

∴ 满足条件的k的取值范围为 ………… 7分

   (Ⅲ)设P(x1,y1),Q(x2,y2),

=(x1+x2,y1+y2),

由①得.                 ②

                ③

因为

所以.……………………… 11分

所以共线等价于.

将②③代入上式,

解得.

所以不存在常数k,使得向量共线.…………………… 12分

21.(本大题12分)

   (1)n=1时,a1=-4

   

∴数列{an-4}为等比数列,公比为2,首项为a1-4=-8 …………5分

   

  …………7分

(2)

   …………10分

相减得:

   ………………12分

22.解: 解:∵f′(x)=4a0x33a1x22a2x+a3为偶函数。

∴a0=a2=0,

∴f(x)=a1x3+a3x

又当x=-时,f(x)取得极大值…………2分

∴ 解得

∴f(x)=x3-x,f′(x)=2x2-1………………4分

⑵解:设所求两点的横坐标为x1、x2

则(2x12-1)(2x22-1)=-1

又∵x1,x2∈[-1,1],

∴2x12-1∈[-1,1],2x22-1∈[-1,1]

∴2x12-1,2x22-1中有一个为1,一个为-1,………………5分

    ∴x1=0,x2=±1,

    ∴所求的两点为(0,0)与(1,-)或(0,0)与(-1,)。………8分

⑶证明:易知sinx∈[-1,1],cosx∈[-1,1]。

当0<x<时,f′(x)<0;当<x<1时,f′(x)>0。

∴f(x)在[0,]为减函数,在[,1]上为增函数,

又f(0)=0,f()=- ,f(1)=-,

而f(x)在[-1,1]上为奇函数,

∴f(x)在[-1,1]上最大值为,最小值为-,

∴f(sinx)∈[-,],f(cosx)∈[-,],………………10分

∴|f(sinx)-f(cosx)|≤|f(sinx)|+|f(cosx)|≤………………………………12分

 

 

 

 

 


同步练习册答案