8.定义在.且.若不等式对任意恒成立.则实数的取值范围 ▲ . 查看更多

 

题目列表(包括答案和解析)

定义在,且

若不等式对任意恒成立,

则实数a的取值范围为   ★   .

查看答案和解析>>

定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m、n∈R恒成立,当x>0时,f(x)>2.
(Ⅰ) 求证f(x)在R上是单调递增函数;
(Ⅱ)已知f(1)=5,解关于t的不等式f(|t2-t|)≤8;
(Ⅲ)若f(-2)=-4,且不等式f(t2+at-a)≥-7对任意t∈[-2,2]恒成立.求实数a的取值范围.

查看答案和解析>>

定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)试求f(0)的值;
(2)判断f(x)的单调性并证明你的结论;
(3)若不等式f[(t-2)(|x-4|-|x+4|)]>f(t2-4t+13)对t∈[4,6]恒成立,求实数x的取值范围.

查看答案和解析>>

定义在上的函数对任意都有为常数).

(1)判断为何值时为奇函数,并证明;

(2)设上的增函数,且,若不等式对任意恒成立,求实数的取值范围.

 

查看答案和解析>>

定义在上的函数对任意都有为常数).
(1)判断为何值时为奇函数,并证明;
(2)设上的增函数,且,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>


同步练习册答案