21.已知A1.A2.B是椭圆的顶点.直线与椭圆交于异于椭圆顶点的P.Q两点.且//A2B.若此椭圆的离心率为(I)求此椭圆的方程, 查看更多

 

题目列表(包括答案和解析)

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,其长轴长与短轴长的和等于6.
(1)求椭圆E的方程;
(2)如图,设椭圆E的上、下顶点分别为A1、A2,P是椭圆上异于A1、A2的任意一点,直线PA1、PA2分别交x轴于点N、M,若直线OT与过点M、N的圆G相切,切点为T.证明:线段OT的长为定值.

查看答案和解析>>

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1,A2,B1是椭圆C的顶点,若椭圆C的离心率e=
3
2
,且过点(
2
2
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)作直线l,使得l∥A2B1,且与椭圆C相交于P、Q两点(异于椭圆C的顶点),设直线A1P和直线B1Q的倾斜角分别是α,β,求证:α+β=π.

查看答案和解析>>

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1,A2,B1是椭圆C的顶点,若椭圆C的离心率e=
3
2
,且过点(
2
2
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)作直线l,使得lA2B1,且与椭圆C相交于P、Q两点(异于椭圆C的顶点),设直线A1P和直线B1Q的倾斜角分别是α,β,求证:α+β=π.
精英家教网

查看答案和解析>>

(2013•徐州三模)如图,在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
3
2
,A1,A2分别是椭圆E的左、右两个顶点,圆A2的半径为a,过点A1作圆A2的切线,切点为P,在x轴的上方交椭圆E于点Q.
(1)求直线OP的方程;
(2)求
PQ
QA1
的值;
(3)设a为常数,过点O作两条互相垂直的直线,分别交椭圆于点B、C,分别交圆A点M、N,记三角形OBC和三角形OMN的面积分别为S1,S2.求S1S2的最大值.

查看答案和解析>>

已知椭圆,A1、A2、B是椭圆的顶点(如图),直线l与椭圆交于异于椭圆顶点的P、Q两点,且l∥A2B.若此椭圆的离心率为,且
(I)求此椭圆的方程;
(II)设直线A1P和直线BQ的倾斜角分别为α、β,试判断α+β是否为定值?若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

一选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

D

D

B

D

B

A

C

D

C

提示:10.解:数列都是公差为1的等差数列,其首项分别为,且.设(),则 ,所以是等差数列,所以的前项和

11.由题,消去可得:,又由题有:,由以上条件可得:点的轨迹为如图所示的线段,而表示点到坐标原点的距离的平方,所以

12.设点到左准线的距离为,则由双曲线的第二定义有:,由题有,所以,又由第一定义在右支上),所以,又由点在右支上,则,解得:,而,所以

二.填空题

13.       14.          15.         16.  1

提示:15.单调递减,

16.如图,设三棱锥得体积为,,当且仅当时三棱锥体积最大,过点,连接,由题可知平面,由三垂线定理可知为侧面与底面成的角,所以,而用等面积法可知:,所以,代入,得

三.解答题

17.解:(1)取OB中点E,连接ME,NE

…………………………………………2分

…………………………………4分

…………………………………………………………5分

(2)连接为异面直线所成的角(或其补角)…7分

由于,所以,,为等腰三角形,……………………………………………………9分

  (3)解法一:连接,设点B到平面OCD的距离为

,,,为等腰三角形,

的高为………11分

,又 

点B到平面OCD的距离为…………………………………………13分

解法二:点A和点B到平面OCD的距离相等,取的中点P连

接OP,过点作 于点Q,,又

,

线段AQ的长就是点A到平面OCD的距离, ………………………………12分

由题可知:,,在.……13分

18.解:中,

………………………………3分

   ……5分    ……………7分

(2)由余弦定理得,又由已知和(1)可知:

…………………………10分

………………………………13分

19.解:(Ⅰ)平面平面…………2分

中,中点.……………4分

平面平面平面.……………6分

(Ⅱ)如图,作点,连接

由已知得平面在面内的射影.

由三垂线定理知为二面角的平面角.……………9分

点,则

.在中,.…………11分

中,

即二面角.………………………………13分

20.解答:(1),又因为 按向量平移后得函数……..2

由g(x)图像关于原点对称得g(-x)=-g(x),即,

,…………………………………………………...4分

(舍)所以…….6分

(2)证明:因为

所以……………………………………8分

                 ……………………………………9分

   ……………………12分

所以     .……………………………………13分

21.解:(I)由已知可得

       ……2分    所以…3分  椭圆方程为……5分

   (II),且定值为    由(I),A2(2,0),B(0,1),且//A2B

       所以直线的斜率………………………………6分

       设直线的方程为

             解得:

   ………………………………………………8分

      

       ……………………9分

       又因为

      

      

      

          又

       是定值。…………12分

22.(1)为正整数),

所以数列的反数列为的通项为正整数).   …………3分

(2)对于(1)中,不等式化为.

∴数列单调递增, 所以, ,要使不等式恒成立,只要.

,∴,又,

所以,使不等式对于任意正整数恒成立的的取值范围是.…………7分(3)设公共项为正整数.                    

①当为奇数时,.  

(表示的子数列),.所以的前项和.

② 当为偶数时,.,则,同样有.所以的前项和.                        …………12分

 

 

 


同步练习册答案