(Ⅱ)过点的直线与椭圆交于两点..设为椭圆与 轴负半轴的交点.且.求实数的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知椭圆方程为,长轴两端点为A、B,短轴上端点为C.
(1)若椭圆焦点坐标为,点M在椭圆上运动,当△ABM的最大面积为3时,求其椭圆方程;
(2)对于(1)中的椭圆方程,作以C为直角顶点的内接于椭圆的等腰直角三角形CDE,设直线CE的斜率为k(k<0),试求k满足的关系等式;
(3)过C任作垂直于,点P、Q在椭圆上,试问在y轴上是否存在一点T使得直线TP的斜率与TQ的斜率之积为定值,如果存在,找出点T的坐标和定值,如果不存在,说明理由.

查看答案和解析>>

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.  
(1)求椭圆C1的方程;  
(2)设椭圆C1的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2垂直平分线交l2于点M,求点M的轨迹C2的方程;  
(3)当P不在x轴上时,在曲线C2上是否存在两个不同点C、D关于PF2对称,若存在,求出PF2的斜率范围,若不存在,说明理由。

查看答案和解析>>

已知椭圆方程为,长轴两端点为A、B,短轴上端点为C.
(1)若椭圆焦点坐标为,点M在椭圆上运动,当△ABM的最大面积为3时,求其椭圆方程;
(2)对于(1)中的椭圆方程,作以C为直角顶点的内接于椭圆的等腰直角三角形CDE,设直线CE的斜率为k(k<0),试求k满足的关系等式;
(3)过C任作垂直于,点P、Q在椭圆上,试问在y轴上是否存在一点T使得直线TP的斜率与TQ的斜率之积为定值,如果存在,找出点T的坐标和定值,如果不存在,说明理由.

查看答案和解析>>

(2008•闵行区二模)已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,长轴两端点为A、B,短轴上端点为C.
(1)若椭圆焦点坐标为F1(2
2
,0)、F2(-2
2
,0)
,点M在椭圆上运动,当△ABM的最大面积为3时,求其椭圆方程;
(2)对于(1)中的椭圆方程,作以C为直角顶点的内接于椭圆的等腰直角三角形CDE,设直线CE的斜率为k(k<0),试求k满足的关系等式;
(3)过C任作
CP
垂直于
CQ
,点P、Q在椭圆上,试问在y轴上是否存在一点T使得直线TP的斜率与TQ的斜率之积为定值,如果存在,找出点T的坐标和定值,如果不存在,说明理由.

查看答案和解析>>

(12分)已知椭圆的离心率,过右焦点的直线与椭圆相交于两点,当直线的斜率为1时,坐标原点到直线的距离为.
(1)求椭圆的方程
(2)椭圆上是否存在点,使得当直线绕点转到某一位置时,有成立?若存在,求出所有满足条件的点的坐标及对应直线方程;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案