A.(1.2] B.[0.+) 查看更多

 

题目列表(包括答案和解析)

设集合,则

A.(1,2]B.[0,+
C.D.[0,2]

查看答案和解析>>

设集合,则

A.(1,2]                               B.[0,+

C.                          D.[0,2]

查看答案和解析>>

设集合,则
A.(1,2]B.[0,+
C.D.[0,2]

查看答案和解析>>

精英家教网A.(不等式选讲选做题)若不等式|x+1|+|x-2|<a无实数解,则a的取值范围是
 

B.(几何证明选做题)如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=
 

C.(极坐标参数方程选做题)曲线
x=cosα
y=1+sinα
(a为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.

查看答案和解析>>

精英家教网A.(不等式选讲选做题)如果存在实数x使不等式|x+1|-|x-2|<k成立,则实数k的取值范围是
 

B.(几何证明选讲选做题)如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
7
,AB=BC=3
,则AC的长为
 

C.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线
ρ=2sinθ与ρcosθ=-1的交点的极坐标为
 

查看答案和解析>>

 

1.B       2.D      3.A      4.C       5.C       6.D      7.D      8.B       9.C       10.B

11.A     12.C

1.,所以选B.

2.,所以选D.

3.,所以选

4.,所以选C.

5.,所以选C.

6.,切线斜率

       ,所以选D.

7.观察图象.所以选D.

8.化为,所以选B.

9.关于对称,,所以选C.

10.直线与椭圆有公共点,所以选B.

11.如图,设,则

       ,

       ,从而,因此与底面所成角的正弦值等于.所以选A.

12.分类涂色① 只用3种颜色,相对面同色,有1种涂法;② 用4种颜色,有种涂法;③ 用五种颜色,有种涂法.共有13种涂法.所以选C.

二、

13.7.由(舍去),

       项的余数为

14.依题设,又,点所形成的平面区域为边长为1的正方形,其面积为1.

15.,由,得

      

16.

      

如图,可设,又

       当面积最大时,.点到直线的距离为

三、

17.(1)

             

              由

              的单调递减区间为

       (2)

                  

                         

18.(1)的所有取值为0.8,0.9,1.0,1.125,1.25,其分布列为

0.8

0.9

1.0

1.125

1.25

0.2

0.15

0.35

0.15

0.15

              的所有取值为0.8,0.96,1.0,1,2,1.44,其分布列为     

0.8

0.96

1.0

1.2

1.44

0.3

0.2

0.18

0.24

0.08

(2)设实施方案一、方案二两年后超过危机前出口额的概率为,则

             

              ∴实施方案二两年后超过危机前出口额的概率更大.

(3)方案一、方案二的预计利润为,则   

10

15

20

0.35

0.35

0.3

      

10

15

20

0. 5

0.18

0.32

                  

∴实施方案一的平均利润更大

19.(1)设交于点

             

             

             

              从而,即,又,且

              平面为正三角形,的中点,

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              设的中点,连接,则

              平面,过点,连接,则

              为二面角的平面角.

              在中,

              又

20.(1)由,得,则

              又为正整数,

             

              ,故

(2)

      

       ∴当时,取得最小值

21.(1)由

              ∴椭圆的方程为:

(2)由

      

       又

设直线的方程为:

              由此得.                                   ①

              设与椭圆的交点为,则

              www.ks5u.com由

              ,整理得

              ,整理得

              时,上式不成立,                ②

              由式①、②得

             

              ∴取值范围是

22.(1)由

              令,则

              当时,上单调递增.

                 的取值范围是

       (2)

              ① 当时,是减函数.

              时,是增函数.

② 当时,是增函数.

综上;当时,增区间为,,减区间为

时,增区间为

 


同步练习册答案