的条件下.若对任意的正整数.在区间内总存在个实数..使得不等式成立.求的最大值. 查看更多

 

题目列表(包括答案和解析)

()中学数学中存在许多关系,比如“相等关系”、“平行关系”等等.如果集合A中元素之间的一个关系“-”满足以下三个条件:

(1)自反性:对于任意aA,都有a-a;

(2)对称性:对于a,bA,若a-b,则有b-a;

(3)传递性:对于a,b,cA,若a-b,b-c,则有a-c.

则称“-”是集合A的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出两个等价关系:              .

查看答案和解析>>

(Ⅰ)已知函数,若存在,使得,则称是函数的一个不动点,设二次函数.

(Ⅰ) 当时,求函数的不动点;

(Ⅱ) 若对于任意实数,函数恒有两个不同的不动点,求实数的取值范围;

(Ⅲ) 在(Ⅱ)的条件下,若函数的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.

 

查看答案和解析>>

(Ⅰ)已知函数,若存在,使得,则称是函数的一个不动点,设二次函数.
(Ⅰ) 当时,求函数的不动点;
(Ⅱ) 若对于任意实数,函数恒有两个不同的不动点,求实数的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,若函数的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.

查看答案和解析>>

(Ⅰ)已知函数,若存在,使得,则称是函数的一个不动点,设二次函数.
(Ⅰ) 当时,求函数的不动点;
(Ⅱ) 若对于任意实数,函数恒有两个不同的不动点,求实数的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,若函数的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.

查看答案和解析>>

若函数对任意的,均有,则称函数具有性质.
(Ⅰ)判断下面两个函数是否具有性质,并说明理由.
;   ②.
(Ⅱ)若函数具有性质,且),
求证:对任意
(Ⅲ)在(Ⅱ)的条件下,是否对任意均有.若成立给出证明,若不成立给出反例.

查看答案和解析>>

一、选择题:

1. 答案:C. {x | x≥0},故选C.

2.C

3. (理)对于中,当n=6时,有所以第25项是7.选C.

4.D

5.A. ∵

      =

∴根据题意作出函数图象即得.选A.

6. 答案:D.当x=1时,y=m ,由图形易知m<0, 又函数是减函数,所以0<n<1,故选D.

7.A

8.C

二、填空题:

9.810

10.答案:

11. 答案:.

12.

13. (2)、(3)

14.

15.(本题满分分)

已知

(Ⅰ)求的值;

(Ⅱ)求的值.

解:(Ⅰ)由, ,         ………………………2分                                   

 .                  …………………5分

(Ⅱ) 原式=             

                              …………………10分

 .                           …………………12分

16.(本题满分分)

在一个盒子中,放有标号分别为的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为,记

(Ⅰ)求随机变量的最大值,并求事件“取得最大值”的概率;

(Ⅱ)求随机变量的分布列和数学期望.

解:(Ⅰ)可能的取值为

 

,且当时,.          ……………3分

因此,随机变量的最大值为

有放回抽两张卡片的所有情况有种,

.                             

答:随机变量的最大值为,事件“取得最大值”的概率为.   ………5分

(Ⅱ)的所有取值为

时,只有这一种情况,

 时,有四种情况,

时,有两种情况.

.              …………11分

则随机变量的分布列为:

因此,数学期望. ……………………13分

 

 

 

 

17.(本题满分分)

如图,已知正三棱柱的底面边长是是侧棱的中点,直线与侧面所成的角为

 (Ⅰ)求此正三棱柱的侧棱长;(Ⅱ) 求二面角的大小;

(Ⅲ)求点到平面的距离.

解:(Ⅰ)设正三棱柱的侧棱长为.取中点,连

是正三角形,

又底面侧面,且交线为

侧面

,则直线与侧面所成的角为.   ……………2分

中,,解得.       …………3分

此正三棱柱的侧棱长为.                         ……………………4分

 注:也可用向量法求侧棱长.

(Ⅱ)解法1:过,连

侧面

为二面角的平面角.           ……………………………6分

中,,又

, 

中,.               …………………………8分

故二面角的大小为.               …………………………9分

解法2:(向量法,见后)

(Ⅲ)解法1:由(Ⅱ)可知,平面,平面平面,且交线为,则平面.                      …………10分

中,.         …………12分

中点,到平面的距离为.       …………13分

解法2:(思路)取中点,连,由,易得平面平面,且交线为.过点,则的长为点到平面的距离.

解法3:(思路)等体积变换:由可求.

解法4:(向量法,见后)

题(Ⅱ)、(Ⅲ)的向量解法:

(Ⅱ)解法2:如图,建立空间直角坐标系

为平面的法向量.

                                       …………6分

又平面的一个法向量                          …………7分

.   …………8分

结合图形可知,二面角的大小为.         …………9分

(Ⅲ)解法4:由(Ⅱ)解法2,…………10分

到平面的距离.13分

18. (本小题满分14分)

一束光线从点出发,经直线上一点反射后,恰好穿过点

(Ⅰ)求点关于直线的对称点的坐标;

(Ⅱ)求以为焦点且过点的椭圆的方程;

(Ⅲ)设直线与椭圆的两条准线分别交于两点,点为线段上的动点,求点的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐标.

解:(Ⅰ)设的坐标为,则.……2分

解得,  因此,点 的坐标为.  …………………4分

(Ⅱ),根据椭圆定义,

,……………5分

∴所求椭圆方程为.                ………………………………7分

(Ⅲ)椭圆的准线方程为.      …………………………8分

设点的坐标为,表示点的距离,表示点到椭圆的右准线的距离.

,         ……………………………10分

,则

 ∴ 时取得最小值.               ………………………………13分

因此,最小值=,此时点的坐标为.…………14分

注:的最小值还可以用判别式法、换元法等其它方法求得.

说明:求得的点即为切点的最小值即为椭圆的离心率.

19.(本题满分分)

已知数列满足:

(Ⅰ)求的值及数列的通项公式;

(Ⅱ)设,求数列的前项和

 

解:(Ⅰ)经计算.   

为奇数时,,即数列的奇数项成等差数列,

;                     

为偶数,,即数列的偶数项成等比数列,

.                           

因此,数列的通项公式为.  

 

(Ⅱ),                             

   ……(1)

 …(2)

(1)、(2)两式相减,

     

   .                        

 

20.(本题满分分)

已知函数和点,过点作曲线的两条切线,切点分别为

(Ⅰ)设,试求函数的表达式;

(Ⅱ)是否存在,使得三点共线.若存在,求出的值;若不存在,请说明理由.

(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数,在区间内总存在个实数

,使得不等式成立,求的最大值.

解:(Ⅰ)设两点的横坐标分别为

 ,   切线的方程为:

切线过点

,   ………………………………………………(1)  …… 2分

同理,由切线也过点,得.…………(2)

由(1)、(2),可得是方程的两根,

   ………………( * )             ……………………… 4分

          

把( * )式代入,得,

因此,函数的表达式为.   ……………………5分

(Ⅱ)当点共线时,

,化简,得

.       ………………(3)     …………… 7分

把(*)式代入(3),解得

存在,使得点三点共线,且 .       ……………………9分

(Ⅲ)解法:易知在区间上为增函数,

依题意,不等式对一切的正整数恒成立,   …………11分

对一切的正整数

同步练习册答案