37.Nowadays business on the Internet is growing rapidly, and this is a strong temptation for hackers, who are looking for ways to break into computer system. A.having been done B.to have been done C.to do D.done 查看更多

 

题目列表(包括答案和解析)

(2011•石景山区一模)已知椭圆
x2
a2
+
y2
b2
=1经过点P(
6
2
1
2
),离心率是
2
2
,动点M(2,t)(t>0)
(1)求椭圆的标准方程;
(2)求以OM为直径且别直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F做OM的垂线与以OM为直径的圆交于点N,证明线段ON长是定值,并求出定值.

查看答案和解析>>

已知椭圆C的离心率为e=
6
3
,一条准线方程为x=
3
2
2

(1)求椭圆C的标准方程;
(2)设动点P满足:
OP
=
OM
+
ON
,其中M,N是椭圆上的点,直线OM与ON的斜率之积为-
1
3
,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,求A,B的坐标;若不存在,说明理由.

查看答案和解析>>

(2012•淮北一模)设0为坐标原点,点M坐标为(2,1),点N(x,y)满足不等式组:
2x+y-12≤0
x-4y+3≤0
x≥1
,则
OM
ON
的最大值为
12
12

查看答案和解析>>

已知以点C(t,
2t
)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(Ⅰ)求证:△AOB的面积为定值;
(Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若丨OM丨=丨ON丨,求圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求丨PB丨+丨PQ丨的最小值及此时点P的坐标.

查看答案和解析>>

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足
OM
ON
?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>


同步练习册答案