有一项是符合题目要求的. 查看更多

 

题目列表(包括答案和解析)

有一项是符合题目要求的.

的值为                                      (   )

A.      B.-      C.      D.-      

查看答案和解析>>

一次高中数学期末考试,选择题共有个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得分,选对得分.在这次考试的选择题部分,某考生比较熟悉其中的个题,该考生做对了这个题.其余个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:

(Ⅰ)在这次考试中,求该考生选择题部分得分的概率;

(Ⅱ)在这次考试中,设该考生选择题部分的得分为,求的数学期望.

 

查看答案和解析>>

一次高中数学期末考试,选择题共有个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得分,选对得分.在这次考试的选择题部分,某考生比较熟悉其中的个题,该考生做对了这个题.其余个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:
(Ⅰ)在这次考试中,求该考生选择题部分得分的概率;
(Ⅱ)在这次考试中,设该考生选择题部分的得分为,求的数学期望.

查看答案和解析>>

一次高中数学期末考试,选择题共有个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得分,选对得分.在这次考试的选择题部分,某考生比较熟悉其中的个题,该考生做对了这个题.其余个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:
(Ⅰ)在这次考试中,求该考生选择题部分得分的概率;
(Ⅱ)在这次考试中,设该考生选择题部分的得分为,求的数学期望.

查看答案和解析>>

考试结束,请将本试题卷和答题卡一并上交。

一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.设全集,集合,则图中的阴影部分表示的集合为

A.                  B.

C.                 D.

2.已知非零向量满足,那么向量与向量的夹角为

A.    B.    C.    D.

3.的展开式中第三项的系数是

       A.               B.               C.15              D.

4.圆与直线相切于点,则直线的方程为

A.   B.   C.  D.

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:

       是减函数,由,得,故选A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的单调递增区间为

       (2)

             

             

             

18.解:(1)当时,有种坐法,

              ,即

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列为          

0

2

3

4

              则

19.解:(1)时,

             

              又             

             

              是一个以2为首项,8为公比的等比数列

             

       (2)

             

              最小正整数

20.解法一:

       (1)设于点

              平面

于点,连接,则由三垂线定理知:是二面角的平面角.

由已知得

∴二面角的大小的60°.

       (2)当中点时,有平面

              证明:取的中点,连接,则

              ,故平面即平面

              平面

              平面

解法二:由已知条件,以为原点,以轴、轴、轴建立空间直角坐标系,则

             

       (1)

              ,设平面的一个法向量为

设平面的一个法向量为,则

二面角的大小为60°.

(2)令,则

      

       由已知,,要使平面,只需,即

则有,得中点时,有平面

21.解:(1)由条件得,所以椭圆方程是

             

(2)易知直线斜率存在,令

       由

      

代入

       有

22.解:(1)

       上为减函数,时,恒成立,

       即恒成立,设,则

       时,在(0,)上递减速,

      

      

(2)若即有极大值又有极小值,则首先必需有两个不同正要

       即有两个不同正根

       令

    ∴当时,有两个不同正根

    不妨设,由知,

    时,时,时,

    ∴当时,既有极大值又有极小值.www.ks5u.com

 

 


同步练习册答案