其中为真命题的序号是 . 查看更多

 

题目列表(包括答案和解析)

以下命题是真命题的序号为

①若ac=bc,则a=b.
②若△ABC内接于椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,则其外心与椭圆的中心O不会重合.
③记f(x)•g(x)=0的解集为A,f(x)=0或g(x)=0的解集为B,则A=B.
④抛物线C1:y2=2p1x(p1>0),抛物线C2:y2=2p2x(p2>0),且p1≠p2;过原点O的直线l与抛物线C1,C2分别交于点A1,A2,过原点O的直线m与抛物线C1,C2分别交于点B1,B2,(l与m不重合),则A1B1平行A2B2

查看答案和解析>>

以下命题是真命题的序号为   
①若ac=bc,则a=b.
②若△ABC内接于椭圆,则其外心与椭圆的中心O不会重合.
③记f(x)•g(x)=0的解集为A,f(x)=0或g(x)=0的解集为B,则A=B.
④抛物线C1:y2=2p1x(p1>0),抛物线C2:y2=2p2x(p2>0),且p1≠p2;过原点O的直线l与抛物线C1,C2分别交于点A1,A2,过原点O的直线m与抛物线C1,C2分别交于点B1,B2,(l与m不重合),则A1B1平行A2B2

查看答案和解析>>

以下命题是真命题的序号为______
①若ac=bc,则a=b.
②若△ABC内接于椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,则其外心与椭圆的中心O不会重合.
③记f(x)•g(x)=0的解集为A,f(x)=0或g(x)=0的解集为B,则A=B.
④抛物线C1:y2=2p1x(p1>0),抛物线C2:y2=2p2x(p2>0),且p1≠p2;过原点O的直线l与抛物线C1,C2分别交于点A1,A2,过原点O的直线m与抛物线C1,C2分别交于点B1,B2,(l与m不重合),则A1B1平行A2B2

查看答案和解析>>

下列四个命题中,真命题的序号为
②③
②③

y=x+
1x
的最小值为2;
②一个物体的运动方程为s=1-t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是5米/秒;
③函数y=x3+x的递增区间是(-∞,+∞);
④若f(x)=sinα-cosx,则f′(α)等于sinα+cosα.

查看答案和解析>>

下列四个命题,其中为真命题的是
①②③
①②③
;(写出所有的真命题序号)
①方程2x2+4x+y=0表示的曲线一定经过坐标原点,
②不等式x2+4x+5≤0的解集为空集,
③方程xy=0表示的曲线关于直线y=x对称,
④若sinα=sinβ,则α=β.

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:

       是减函数,由,得,故选A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的单调递增区间为

       (2)

             

             

             

18.解:(1)当时,有种坐法,

              ,即

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列为          

0

2

3

4

              则

19.解:(1)时,

             

              又             

             

              是一个以2为首项,8为公比的等比数列

             

       (2)

             

              最小正整数

20.解法一:

       (1)设于点

              平面

于点,连接,则由三垂线定理知:是二面角的平面角.

由已知得

∴二面角的大小的60°.

       (2)当中点时,有平面

              证明:取的中点,连接,则

              ,故平面即平面

              平面

              平面

解法二:由已知条件,以为原点,以轴、轴、轴建立空间直角坐标系,则

             

       (1)

              ,设平面的一个法向量为

设平面的一个法向量为,则

二面角的大小为60°.

(2)令,则

      

       由已知,,要使平面,只需,即

则有,得中点时,有平面

21.解:(1)由条件得,所以椭圆方程是

             

(2)易知直线斜率存在,令

       由

      

代入

       有

22.解:(1)

       上为减函数,时,恒成立,

       即恒成立,设,则

       时,在(0,)上递减速,

      

      

(2)若即有极大值又有极小值,则首先必需有两个不同正要

       即有两个不同正根

       令

    ∴当时,有两个不同正根

    不妨设,由知,

    时,时,时,

    ∴当时,既有极大值又有极小值.www.ks5u.com

 

 


同步练习册答案