33.[物理8物理3-3] 如图所示.一个质量为.横截面积为的活塞.将一定量的理想气体封闭在上端开口的直立圆筒形汽缸内.活塞上堆放着质量为的细砂.最初活塞静止.距离缸底.现不断地取走细砂.使活塞缓慢上升.商到细砂全部被取走. (已知大气压强为) (1)在此过程中.下列判断正确的是 A.气体的压强不变.气体对外做功 B.气体的温度可能不变.气体对外做功 C.气体的压强减小.内能可能不变 D.气体对外做功.内能可能减小 (2)如果汽缸的导热性能良好.最终活塞距离缸底的距离为多少? 查看更多

 

题目列表(包括答案和解析)

  班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.

  (Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式即可,不必计算出结果);

  (Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.

(1)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;

(2)若这8位同学的数学、物理分数事实上对应如下表:

根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01),如果不具有线性相关性,请说明理由.

查看答案和解析>>

为了对2007年佛山市中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95.
(1)若规定85分(包括85分)以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
精英家教网
用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
(3)求y与x、z与x的线性回归方程(系数精确到0.01),并用相关指数比较所求回归模型的效果.
参考数据:
.
x
=77.5
.
y
=85
.
z
=81
8
i=1
(xi-
.
x
 
)
2
≈1050
8
i=1
(yi-
.
y
 
)
2
≈456
8
i=1
(zi-
.
z
 
)
2
≈550
8
i=1
(xi-
.
x
 
)(yi-
.
y
 
)≈688
8
i=1
(xi-
.
x
 
)(zi-
.
z
 
)≈755
8
i=1
(yi-
?
y
i
)
2
≈7
8
i=1
(zi-
?
z
i
)
2
≈94
1050
≈32.4,
456
≈21.4,
550
≈23.5

查看答案和解析>>

(2012•长春模拟)某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号 1 2 3 4 5 6 7 8 9 10
数    学 1.3 12.3 25.7 36.7 50.3 67.7 49.0 52.0 40.0 34.3
物    理 2.3 9.7 31.0 22.3 40.0 58.0 39.0 60.7 63.3 42.7
学生序号 11 12 13 14 15 16 17 18 19 20
数    学 78.3 50.0 65.7 66.3 68.0 95.0 90.7 87.7 103.7 86.7
物    理 49.7 46.7 83.3 59.7 50.0 101.3 76.7 86.0 99.7 99.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.

(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式即可,不必计算出结果).

(Ⅱ)随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.

若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;

(2)若这8位同学的数学、物理分数对应如下表:

学生编号

1

2

3

4

5

6

7

8

数学分数x

60

65

70

75

80

85

90

95

物理分数y

72

77

80

84

88

90

93

95

 根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.

    参考公式:相关系数

    回归直线的方程是:

    其中对应的回归估计值.

参考数据:

 

查看答案和解析>>

为了对2007年佛山市中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95.
(1)若规定85分(包括85分)以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:

用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
(3)求y与x、z与x的线性回归方程(系数精确到0.01),并用相关指数比较所求回归模型的效果.
参考数据:

查看答案和解析>>


同步练习册答案