(2)由得. -------10分 查看更多

 

题目列表(包括答案和解析)

由于电脑故障,使得随机变量ξ的分布列部分数据丢失(以□代替),其表如下:
ξ 1 2 3 4 5 6
p 0.20 0.10 0.□5 0.10 0.1□ 0.20
则其期望为
3.5
3.5

查看答案和解析>>

.(本小题满分13分)
某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数),随即按如右所示程序框图运行相应程序.若电脑显示“中奖”,则抽奖者获得9000元奖金;若电脑显示“谢谢”,则不中奖.

(Ⅰ)已知小曹在第一轮抽奖中被抽中, 
求小曹在第二轮抽奖中获奖的概率;
(Ⅱ)若小叶参加了此次活动,求小叶参加此次活动收益的期望;
(Ⅲ)若此次募捐除奖品和奖金外,不计其它支出,该机构想获得96万元的慈善款.问该慈善机构此次募捐是否能达到预期目标.

查看答案和解析>>

.(本小题满分14分)

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收 

益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单

位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.现

有两个奖励方案的函数模型:(1);(2).试问这两个函数模

型是否符合该公司要求,并说明理由.

 

 

查看答案和解析>>

.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日    期

12月1日

12月2日

12月3日

12月4日

12月5日

温差(°C)

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻2天数据的概率;

(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:    )

 

查看答案和解析>>

.(本小题满分13分)

某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数),随即按如右所示程序框图运行相应程序.若电脑显示“中奖”,则抽奖者获得9000元奖金;若电脑显示“谢谢”,则不中奖.

(Ⅰ)已知小曹在第一轮抽奖中被抽中, 

求小曹在第二轮抽奖中获奖的概率;

(Ⅱ)若小叶参加了此次活动,求小叶参加此次活动收益的期望;

(Ⅲ)若此次募捐除奖品和奖金外,不计其它支出,该机构想获得96万元的慈善款.问该慈善机构此次募捐是否能达到预期目标.

 

 

查看答案和解析>>


同步练习册答案