已知数列{an}满足且. (Ⅰ)求数列的前三项 a1.a2.a3, (Ⅱ)求证:数列{}为等差数列, (Ⅲ)求数列{an}的前n项和Sn. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =+ 4n – 1 , nÎN*.

(1) 证明:(a n– 2)2=0 (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .

查看答案和解析>>

(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =+ 4n – 1 , nÎN*.
(1) 证明:(a n– 2)2="0" (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .

查看答案和解析>>

(本小题满分12分)
已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4
(1)若a1=2,设,求数列{cn}的前n项的和Tn
(2)在(1)的条件下,若有的最大值.

查看答案和解析>>

(文) (本小题满分12分) 已知递增的等比数列{an}满足a2a3a4=28,且a3+2是a2a4的等差中项.

(1)求数列{an}的通项公式;

 (2)若bn=log2an+1Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.

 

 

查看答案和解析>>

(本小题满分12分)

已知单调递增的等比数列{}满足,且的等差中

项.(1)求数列{an}的通项公式.

(2)若=,sn为数列的前项和,求证sn  .

 

 

查看答案和解析>>


同步练习册答案