题目列表(包括答案和解析)
如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.
(1)求证:;
(2)若四边形ABCD是正方形,求证;
(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。
【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE
又过作圆柱的截面交下底面于.∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF AD∥EF
第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形 又
BC、AE是平面ABE内两条相交直线
第三问中,设正方形ABCD的边长为x,则在
在
由(2)可知:为二面角A-BC-E的平面角,所以
证明:(1)由圆柱的性质知:AD平行平面BCFE
又过作圆柱的截面交下底面于.∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF AD∥EF
(2) 四边形ABCD是正方形 又
BC、AE是平面ABE内两条相交直线
(3)设正方形ABCD的边长为x,则在
在
由(2)可知:为二面角A-BC-E的平面角,所以
下面几种推理是合情推理的是______ (填写序号)
①由圆的性质类比得出球的有关性质;
②由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是;
③四边形内角和是,五边形内角和是,由此得出凸多边形内角和是.
下面几种推理是合情推理的是 ( )
①由圆的性质类比出球的有关性质;
②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;
③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;
④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.
A.①② B.①③
C.①②④ D.②④
下列推理是归纳推理的是( )
A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则P点的轨迹为椭圆
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式
C.由圆x2+y2=r2的面积πr2,猜想出椭圆=1的面积S=πab
D.利用等差数列的性质推理得到等比数列的相关性质
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {}的前n项和为( )
| A. |
| B. |
| C. |
| D. |
|
考点: | 数列的求和;等差数列的性质. |
专题: | 等差数列与等比数列. |
分析: | 利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 {}的前n项和. |
解答: | 解:∵Sn=4n+=2n2+2n, ∴. ∴数列 {}的前n项和===. 故选A. |
点评: | 熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键. |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com