令得 列表--------8分 由上表知:f(x)在上递增,在上递减----9分 的极大值是:.f(x)的极小值是: .f(x)无最大值----13分17. 解:联立方程解得交点坐标---4分 面积---13分 查看更多

 

题目列表(包括答案和解析)

某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8πr2分,其中r是瓶子的半径,单位是厘米.已知每出售1 mL的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6 cm,则每瓶饮料的最大利润为

[  ]
A.

28.8π分

B.

18.8π分

C.

π分

D.

10.8π分

查看答案和解析>>

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

已知向量,且,A为锐角,求:

(1)角A的大小;

(2)求函数的单调递增区间和值域.

【解析】第一问中利用,解得   又A为锐角                 

      

第二问中,

 解得单调递增区间为

解:(1)        ……………………3分

   又A为锐角                 

                              ……………………5分

(2)

                                                  ……………………8分

  由 解得单调递增区间为

                                                  ……………………10分

 

 

查看答案和解析>>

已知函数

(1)若函数的图象经过P(3,4)点,求a的值;

(2)比较大小,并写出比较过程;

(3)若,求a的值.

【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数的图象经过P(3,4)点,所以,解得,因为,所以.

(2)问中,对底数a进行分类讨论,利用单调性求解得到。

(3)中,由知,.,指对数互化得到,,所以,解得所以, 或 .

解:⑴∵函数的图象经过,即.        … 2分

,所以.             ………… 4分

⑵当时,;

时,. ……………… 6分

因为,

时,上为增函数,∵,∴.

.当时,上为减函数,

,∴.即.      …………………… 8分

⑶由知,.所以,(或).

.∴,       … 10分

 或 ,所以, 或 .

 

查看答案和解析>>

把函数的图象按向量平移得到函数的图象. 

(1)求函数的解析式; (2)若,证明:.

【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 ,便可以得到结论。第二问中,令,然后求导,利用最小值大于零得到。

(1)解:设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 证明:令,……6分

……8分

,∴,∴上单调递增.……10分

,即

 

查看答案和解析>>


同步练习册答案