题目列表(包括答案和解析)
某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8πr2分,其中r是瓶子的半径,单位是厘米.已知每出售1 mL的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6 cm,则每瓶饮料的最大利润为
28.8π分
18.8π分
π分
10.8π分
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵,∴,…………………1分
∵,得到三角关系是,结合,解得。
(2)由,解得,,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②联立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
将①代入②中,可得 ③ …………………4分
将③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,从而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
综上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
综上可得 …………………12分
(若用,又∵ ∴ ,
已知向量,且,A为锐角,求:
(1)角A的大小;
(2)求函数的单调递增区间和值域.
【解析】第一问中利用,解得 又A为锐角
第二问中,
由 解得单调递增区间为
解:(1) ……………………3分
又A为锐角
……………………5分
(2)
……………………8分
由 解得单调递增区间为
……………………10分
已知函数
(1)若函数的图象经过P(3,4)点,求a的值;
(2)比较大小,并写出比较过程;
(3)若,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数的图象经过P(3,4)点,所以,解得,因为,所以.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由知,.,指对数互化得到,,所以,解得所以, 或 .
解:⑴∵函数的图象经过∴,即. … 2分
又,所以. ………… 4分
⑵当时,;
当时,. ……………… 6分
因为,,
当时,在上为增函数,∵,∴.
即.当时,在上为减函数,
∵,∴.即. …………………… 8分
⑶由知,.所以,(或).
∴.∴, … 10分
∴ 或 ,所以, 或 .
把函数的图象按向量平移得到函数的图象.
(1)求函数的解析式; (2)若,证明:.
【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 ,便可以得到结论。第二问中,令,然后求导,利用最小值大于零得到。
(1)解:设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 证明:令,……6分
则……8分
,∴,∴在上单调递增.……10分
故,即
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com