函数内恒有.解关于的不等式 安徽省无为中学第二次检测试卷 查看更多

 

题目列表(包括答案和解析)

已知O为坐标原点,对于函数f(x)=asinx+bcosx,称向量
OM
=(a,b)
为函数f(x)的伴随向量,同时称函数f(x)为向量
OM
的伴随函数.记
ON
=(1,
3
)
的伴随函数为h(x),则使得关于x的方程h(x)-t=0在[0,
π
2
]
内恒有两个不相等实数解的实数t的取值范围是
[
3
,2)
[
3
,2)

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
b-a
a
(可不用证明函数的连续性和可导性).

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:数学公式在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得数学公式.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,数学公式(可不用证明函数的连续性和可导性).

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x,使得.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,(可不用证明函数的连续性和可导性).

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R ,m≠0)的图像在(2,f(2))处的切线与x轴平行.

(1)求n,m的关系式并求f(x)的单调减区间;

(2)证明:对任意实数0<x1<x2<1, 关于x的方程:

在(x1,x2)恒有实数解

(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:

当0<a<b时,(可不用证明函数的连续性和可导性)

查看答案和解析>>


同步练习册答案