27. 已知椭圆:的离心率为.以原点为圆心.椭圆的短半轴长为半径的圆与直线相切. ⑴求椭圆C的方程, ⑵设..是椭圆上关于轴对称的任意两个不同的点.连结交椭圆于另一点.求直线的斜率的取值范围, ⑶在⑵的条件下.证明直线与轴相交于定点. [解析] ⑴由题意知. 所以.即. 又因为.所以. 故椭圆的方程为:. ⑵由题意知直线的斜率存在.设直线的方程为 ① 联立消去得:. 由得. 又不合题意. 所以直线的斜率的取值范围是或. ⑶设点.则. 直线的方程为. 令.得. 将代入整理.得. ② 由得①代入②整理.得. 所以直线与轴相交于定点. 查看更多

 

题目列表(包括答案和解析)

(全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                     的离心率为      ,过右焦点F的直线lC相交于AB

 
           

两点,当l的斜率为1时,坐标原点Ol的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当lF转到某一位置时,有               成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

查看答案和解析>>

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

(A题) (奥赛班做)已知椭圆E的离心率为e,左右焦点分别为F1、F2,抛物线C以F1顶点,F2为焦点,P为两曲线的一个交点,
|PF1|
|PF2|
=e
,则e的值为
3
3
3
3

查看答案和解析>>

(本小题满分16分)已知椭圆的离心率为,直线

与椭圆相切.

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点为,直线过点且垂直与椭圆的长轴,动直线垂直于直线于点,线段的垂直平分线交于点,求点的轨迹的方程.

 

查看答案和解析>>


同步练习册答案