解析:(1)①由条件知PQ垂直平分AB. 查看更多

 

题目列表(包括答案和解析)

如图是单位圆上的点,分别是圆轴的两交点,为正三角形.

(1)若点坐标为,求的值;

(2)若,四边形的周长为,试将表示成的函数,并求出的最大值.

【解析】第一问利用设 

∵  A点坐标为∴   ,

(2)中 由条件知  AB=1,CD=2 ,

中,由余弦定理得 

  ∴ 

∵       ∴   

∴  当时,即 当 时 , y有最大值5. .

 

查看答案和解析>>

设函数f(x)=在[1,+∞上为增函数.  

(1)求正实数a的取值范围;

(2)比较的大小,说明理由;

(3)求证:(n∈N*, n≥2)

【解析】第一问中,利用

解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立

∴ax-1≥0对x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上为增函数,

∴n≥2时:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(I)求椭圆的方程;

(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足O为坐标原点),当 时,求实数的取值范围.

【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。

第一问中,利用

第二问中,利用直线与椭圆联系,可知得到一元二次方程中,可得k的范围,然后利用向量的不等式,表示得到t的范围。

解:(1)由题意知

 

查看答案和解析>>

设函数,其中为自然对数的底数.

(1)求函数的单调区间;

(2)记曲线在点(其中)处的切线为轴、轴所围成的三角形面积为,求的最大值.

【解析】第一问利用由已知,所以

,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;

第二问中,因为,所以曲线在点处切线为.

切线轴的交点为,与轴的交点为

因为,所以,  

, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时

解:(Ⅰ)由已知,所以, 由,得,  所以,在区间上,,函数在区间上单调递减; 

在区间上,,函数在区间上单调递增;  

即函数的单调递减区间为,单调递增区间为.

(Ⅱ)因为,所以曲线在点处切线为.

切线轴的交点为,与轴的交点为

因为,所以,  

, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时

所以,的最大值为

 

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)与直线x+y-1=0相交于A,B两点.
(1)当椭圆的半焦距c=1,且a2,b2,c2成等差数列时,求椭圆的方程;
(2)在(1)的条件下,求弦AB的长度;
(3)当椭圆的离心率e满足
3
3
≤e≤
2
2
,且以AB为直径的圆经过坐标原点O,求椭圆长轴长的取值范围.

查看答案和解析>>


同步练习册答案