(本小题主要考查函数.导数.方程等知识.考查数形结合.化归与转化.分类与讨论的数学思想方法.以及运算求解能力) (1)解:∵.∴. ∵在上是减函数.在上是增函数. ∴当时.取到极小值.即. ∴. 知.. ∵1是函数的一个零点.即.∴. ∵的两个根分别为.. ∵在上是增函数.且函数在上有三个零点. ∴.即. ∴.故的取值范围为. 知.且. 要讨论直线与函数图像的交点个数情况. 即求方程组解的个数情况. 由. 得. 即. 即. ∴或. 由方程. (*) 得. ∵. 若.即.解得.此时方程(*)无实数解. 若.即.解得.此时方程(*)有一个实数解. 若.即.解得.此时方程(*)有两个实数解.分别为.. 且当时... 综上所述.当时.直线与函数的图像有一个交点. 当或时.直线与函数的图像有二个交点. 当且时.直线与函数的图像有三个交点. 查看更多

 

题目列表(包括答案和解析)

已知函数的定义域为,对任意都有

数列满足N.证明函数是奇函数;求数列的通项公式;令N, 证明:当时,.

(本小题主要考查函数、数列、不等式等知识,  考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识)

查看答案和解析>>

沿海地区某农村在2002年底共有人口1480人,全年工农业生产总值为3180万元.2003年起计划10年内该村的总产值每年增加60万元,人口每年净增A人,设从2003年起计划10内该村的总产值每年增加60万元,人口每年净增A人,设从2003年起的第x年(2003年为第一年)该村人均产值为y万元.

(1)    写出yx之间的函数关系式;

(2)    为使该村的人均产值年年都有增长,那么该村每年人口的净增不能超过多少人?

本小题主要考查函数知识、函数的单调性,考查数学建模,运用所学知识解决实际问题的能力.

查看答案和解析>>

沿海地区某农村在2002年底共有人口1480人,全年工农业生产总值为3180万元.2003年起计划10年内该村的总产值每年增加60万元,人口每年净增A人,设从2003年起计划10内该村的总产值每年增加60万元,人口每年净增A人,设从2003年起的第x年(2003年为第一年)该村人均产值为y万元.

(1)    写出yx之间的函数关系式;

(2)    为使该村的人均产值年年都有增长,那么该村每年人口的净增不能超过多少人?

本小题主要考查函数知识、函数的单调性,考查数学建模,运用所学知识解决实际问题的能力.

查看答案和解析>>

(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

查看答案和解析>>

已知函数其中a>0.

(I)求函数f(x)的单调区间;

(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;

(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。

【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.

 

查看答案和解析>>


同步练习册答案