15. 查看更多

 

题目列表(包括答案和解析)

(本题满分13分)

已知数列满足

(1)计算的值;

(2)由(1)的结果猜想的通项公式,并证明你的结论。

查看答案和解析>>

(本题满分13分)

如图在棱长为2的正方体中,点F为棱CD中点,点E在棱BC上

(1)确定点E位置使

(2)当时,求二面角的平面角的余弦值;

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分13分)

一个口袋里有4个不同的红球,6个不同的白球(球的大小均一样)

(1)从中任取3个球,恰好为同色球的不同取法有多少种?

(2)取得一个红球记为2分,一个白球记为1分。从口袋中取出五个球,使总分不小于7分的不同取法共有多少种?

查看答案和解析>>

(本题满分13分)已知定义域为[0,1]的函数同时满足:  ①对于任意的,总有;  ②=1;     ③当时有.

(1)求的值;w.w.w.k.s.5.u.c.o.m        

(2)求的最大值;

(3)当对于任意,总有成立,求实数的取值范围.

查看答案和解析>>

(本题满分13分)

已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,且,垂足为

(1)设点的坐标为,求的最值;

(2)求四边形的面积的最小值.

查看答案和解析>>

 

一、选择题:本大题共有8个小题,每小题5分,共40分;在每个小题给出的四个选项中有且仅有一个是符合题目要求的。

1―8 BDCAABCB

二、填空题:本大题共有6个小题,每小题5分,共30分;请把答案写在相应的位置上。

9.    10.    11.7    12.    13.    14.

三、解答题:本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤。

15.(本题满分13分)

解:

   (1)

   (2)由(1)知,

16.(本题满分13分)

    解:(1)表示经过操作以后袋中只有1个红球,有两种情形出现

①先从中取出红和白,再从中取一白到

②先从中取出红球,再从中取一红球到

。 ………………7分

   (2)同(1)中计算方法可知:

于是的概率分布列

0

1

2

3

P

  。 ………………13分

17.(本题满分13分)

解法1:(1)连结MA、B1M,过M作MN⊥B1M,且MN交CC1点N,

又∵平面ABC⊥平面BB1C1C

平面ABC∩平面BB1C1C=BC,

∴AM⊥平面BB1C1C

∵MN平面BB1C1C

∴MN⊥AM。

∵AM∩B1M=M,

∴MN⊥平面AMB1,∴MN⊥AB1

∵在Rt△B1BM与Rt△MCN中,

即N为C1C四等分点(靠近点C)。  ……………………6分

   (2)过点M作ME⊥AB1,垂足为R,连结EN,

由(1)知MN⊥平面AMB1

∴EN⊥AB1

∴∠MEN为二面角M―AB1―N的平面角。

∵正三棱柱ABC―A1B1C1,BB1=BC=2,

∴N点是C1C的四等分点(靠近点C)。  ………………6分

   (2)∵AM⊥BC,平面ABC⊥平面BB1C1C

且平面ABC∩平面BB1C1C=BC,

∴AM⊥平面BB1C1C

∵MN平面BB1C1,∴AM⊥MN,

∵MN⊥AB1,∴MN⊥平面AMB1

 

18.(本题满分13分)

解:(1)

   (2)当

   (3)令

     ①

     ②

①―②得   ………………13分

19.(本题满分14分)

解:(1)设椭圆C的方程:

   (2)由

        ①

由①式得

20.(本题满分14分)

解:(1)

   (2)证明:①在(1)的过程中可知

②假设在

综合①②可知:   ………………9分

   (3)由变形为:

   

 

 


同步练习册答案