20. 解:(1)当时.由得. ,(且) ----------------------------------------------2分 当时.由.得 --------------------------------------4分 ∴ ------------------------5分 (2)当且时.由<0,解得.----------------6分 当时. ------------------------------8分 ∴函数的单调减区间为 -------------------------------9分 (3)对.都有即. 也就是对恒成立.----------------------------------11分 由(2)知当时. ∴ 函数在和都单调递增---------------------------------------12分 又. 当时.∴当时. 同理可得.当时.有. 综上所述得.对. 取得最大值2, ∴ 实数的取值范围为.----------------------------------------------------14分 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

  已知:函数是定义在上的偶函数,当时,为实数).

  (1)当时,求的解析式;

  (2)若,试判断上的单调性,并证明你的结论;

  (3)是否存在,使得当有最大值1?若存在,求出的值;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)
  已知:函数是定义在上的偶函数,当时,为实数).
  (1)当时,求的解析式;
  (2)若,试判断上的单调性,并证明你的结论;
  (3)是否存在,使得当有最大值1?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分14分)

已知函数满足如下条件:当时,,且对任意,都有

(1)求函数的图象在点处的切线方程;

(2)求当时,函数的解析式;

(3)是否存在,使得等式

成立?若存在就求出),若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)
  已知:函数是定义在上的偶函数,当时,为实数).
  (1)当时,求的解析式;
  (2)若,试判断上的单调性,并证明你的结论;
  (3)是否存在,使得当有最大值1?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

(本题满分14分)已知是定义在上的奇函数,当时,

(1)求的解析式;

(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.

(3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖.求证:若时,函数在区间上被函数覆盖.

 

查看答案和解析>>


同步练习册答案