题目列表(包括答案和解析)
(本题满分14分)设,函数.
(Ⅰ)证明:存在唯一实数,使;
(Ⅱ)定义数列:,,.
(i)求证:对任意正整数n都有;
(ii) 当时,若,
证明:当k时,对任意都有:
(本题满分14分)已知函数f (x)=lnx,g(x)=ex.
(I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;
(Ⅱ)设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.
注:e为自然对数的底数.
(本题满分14分)设,函数.
(Ⅰ)证明:存在唯一实数,使;
(Ⅱ)定义数列:,,.
(i)求证:对任意正整数n都有;
(ii) 当时, 若,
证明:当k时,对任意都有:
(本小题满分14分)
设曲线:,表示的导函数。
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)求函数的极值;
(Ⅲ)当时,对于曲线上的不同两点,是否存在
唯一,使直线的斜率等于?并证明你的结论。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com