.试在下列四个命题中找出一个与命题“无火不冒烟 等价的命题 A.若有火必冒烟 B.虽无火但有可能冒烟 C.冒烟处必有火 D.虽无烟但可能有火 查看更多

 

题目列表(包括答案和解析)

在下列四个命题中,其中为真命题的是(  )

查看答案和解析>>

在下列四个命题中:
①函数y=tan(x+
π
4
)
的定义域是{x|x≠
π
4
+kπ,k∈Z}

②y=tanx在其定义域内为增函数;
③若
a
c
=
b
c
,则必有
a
=
b

④函数y=cos2x+sinx的最小值为-1.
把正确的命题的序号都填在横线上
①④
①④

查看答案和解析>>

13、在下列四个命题中,正确的共有(  )
①坐标平面内的任何一条直线均有倾斜角和斜率;
②直线的倾斜角的取值范围是[0,π];
③若一条直线的斜率为tanα,则此直线的倾斜角为α;
④若一条直线的倾斜角为α,则此直线的斜率为tanα.

查看答案和解析>>

在下列四个命题中
①已知A、B、C、D是空间的任意四点,则
AB
+
BC
+
CD
+
DA
=
0

②若{
a
b
c
}为空间的一组基底,则{
a
+
b
b
+
c
c
+
a
}也构成空间的一组基底.
|(
a
b
)|•
c
=|
a
|•|
b
|•|
c
|

④对于空间的任意一点O和不共线的三点A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x,y,z∈R),则P、A、B、C四点共面.
其中正确的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

关于函数f(x)=sin(2x+
π
2
)
,在下列四个命题中:
①f(x)的最小正周期是
π
2

②f(x)是偶函数;
③f(x)是图象可以出g(x)=sin2x的图象向左平移
π
2
个单位长度得到;
④若f(x)=-
4
5
,-
π
2
<x<
π
2
,则cosx=
10
10

以上命题正确的是
 
(填上所有正确命题的序号)

查看答案和解析>>

一,选择题:           

 D C B CC,     CA BC B

二、填空题:

(11),     -3,         (12), 27      (13),

(14), .       (15),   -26,14,65

三、解答题:

  16,   由已知得;所以解集:;

17, (1)由题意=1又a>0,所以a=1.

      (2)g(x)=,当时,,无递增区间;当x<1时,,它的递增区间是

    综上知:的单调递增区间是

18, (1)当0<t≤10时,

是增函数,且f(10)=240

当20<t≤40时,是减函数,且f(20)=240  所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟。(3)当0<t≤10时,令,则t=4  当20<t≤40时,令,则t≈28.57 

则学生注意力在180以上所持续的时间28.57-4=24.57>24

从而教师可以第4分钟至第28.57分钟这个时间段内将题讲完。

19, (I)……1分

       根据题意,                                                 …………4分

       解得.                                                            …………7分

   (II)因为……7分

   (i)时,函数无最大值,

           不合题意,舍去.                                                                  …………11分

   (ii)时,根据题意得

          

       解之得                                                                      …………13分

       为正整数,=3或4.                                                       …………14分

 

20. (1)当x∈[-1,0)时, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

当x∈[2k-1,2k),(k∈Z)时,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

当x∈[2k,2k+1](k∈Z)时,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

故当x∈[2k-1,2k+1](k∈Z)时, f(x)的表达式为

f(x)=

loga[2-(x-2k)],x∈[2k,2k+1].

(2)∵f(x)是以2为周期的周期函数,且为偶函数,∴f(x)的最大值就是当x∈[0,1]时f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是减函数,

∴[f(x)]max= f(0)= =,∴a=4.

当x∈[-1,1]时,由f(x)>

    得

f(x)是以2为周期的周期函数,

f(x)>的解集为{x|2k+-2<x<2k+2-,k∈Z

21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

又8x f(x)4(x2+1) 对恒成立,∴a=c=2   f(x)=2(x+1)2

(2)∵g(x)==,D={x?x-1  }

X1=,x2=,x3=-,x4=-1,∴M={,-,-1}

 


同步练习册答案