题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线,
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数和,不等式恒成立,试求实数的取值范围.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B错;+==≥4,故A错;由基本不等式得≤=,即+≤,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D错.故选C.
.定义域为R的函数满足,且当时,,则当时,的最小值为( )
(A) (B) (C) (D)
.过点作圆的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条
一,选择题:
D C B CC, CA BC B
二、填空题:
(11), -3, (12), 27 (13),
(14), . (15), -26,14,65
三、解答题:
16, 由已知得;所以解集:;
17, (1)由题意,=1又a>0,所以a=1.
(2)g(x)=,当时,=,无递增区间;当x<1时,=,它的递增区间是.
综上知:的单调递增区间是.
18, (1)当0<t≤10时,
是增函数,且f(10)=240
当20<t≤40时,是减函数,且f(20)=240 所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟。(3)当0<t≤10时,令,则t=4 当20<t≤40时,令,则t≈28.57
则学生注意力在180以上所持续的时间28.57-4=24.57>24
从而教师可以第4分钟至第28.57分钟这个时间段内将题讲完。
19, (I)……1分
根据题意, …………4分
解得. …………7分
(II)因为……7分
(i)时,函数无最大值,
不合题意,舍去. …………11分
(ii)时,根据题意得
解之得 …………13分
为正整数,=3或4. …………14分
20. (1)当x∈[-1,0)时, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).
当x∈[2k-1,2k),(k∈Z)时,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].
当x∈[2k,2k+1](k∈Z)时,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].
故当x∈[2k-1,2k+1](k∈Z)时, f(x)的表达式为
|