② 已知直线过点且和直线垂直.求直线的方程,得分评卷人 查看更多

 

题目列表(包括答案和解析)

(本题8分) 已知直线过点且与直线垂直,抛物线C:与直线交于A、B两点.

(1)求直线的参数方程;

(2)设线段AB的中点为P,求P的坐标和点M到A、B两点的距离之积.

 

查看答案和解析>>

(本题8分) 已知直线过点且与直线垂直,抛物线C:与直线交于A、B两点.
(1)求直线的参数方程;
(2)设线段AB的中点为P,求P的坐标和点M到A、B两点的距离之积.

查看答案和解析>>

已知直线l1:x+2y+1=0,l2:-2x+y+2=0,它们相交于点A.
(1)判断直线l1和l2是否垂直?请给出理由;
(2)求过点A且与直线l3:3x+y+4=0平行的直线方程.

查看答案和解析>>

已知直线l1:2x-3y+10=0,l2:3x+4y-2=0.求经过l1和l2的交点,且与直线l3:3x-2y+4=0垂直的直线l的方程.

查看答案和解析>>

已知直线l1:x+2y+1=0,l2:-2x+y+2=0,它们相交于点A.
(1)判断直线l1和l2是否垂直?请给出理由;
(2)求A点的坐标及过点A且与直线l3:3x+y+4=0平行的直线方程(请给出一般式)
(3)求直线l1上点P(1,y1),Q(x2,1)与B(2,1)构成的三角形的面积.

查看答案和解析>>

一、选择题(4′×10=40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空题(4′×4=16分)

11.       12.          13.       14.

三、解答题(共44分)

15.①解:原不等式可化为:  ………………………2′

www.ks5u.com   作根轴图:

 

 

 

                                                     ………………………4′

   可得原不等式的解集为:  ………………………6′

②解:直线的斜率  ………………………2′

∵直线与该直线垂直

              ………………………4′

的方程为: ………………………5′

为所求………………………6′

16.解:∵  ∴………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

当且仅当:………………………6′

       时,………………………7′

17.解:将代入中变形整理得:

………………………2′

首先………………………3′

   

由题意得:

解得:(舍去)………………………5′

由弦长公式得:………………………7′

18.解①设双曲线的实半轴,虚半轴分别为

由题得:   ∴………………………1′

于是可设双曲线方程为:………………………2′

将点代入可得:

∴该双曲线的方程为:………………………4′

②直线方程可化为:

则它所过定点代入双曲线方程:得:

………………………6′

又由

…………7′

……………………8′

19.解:①设中心关于的对称点为

解得:

,又点在左准线上,

的方程为:……………………4′

②设

成等差数列,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

……………………9′

∴椭圆的方程为:

 

 

 


同步练习册答案