题目列表(包括答案和解析)
(本小题满分12分)二次函数的图象经过三点.
(1)求函数的解析式(2)求函数在区间上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:;
(Ⅲ)设,证明:对任意的正整数n、m,均有(本小题满分12分)已知函数,其中a为常数.
(Ⅰ)若当恒成立,求a的取值范围;
(Ⅱ)求的单调区间.(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当时,求弦长|AB|的取值范围.
1.B 2.B 3.A 4.C 5.C 6.B 7.D 8.B 9.C 10.B
11.A 12.D
【解析】
1.,所以选B.
2.的系数是,所以选B.
3.,所以选.
4.为钝角或,所以选C
5.,所以选C.
6.,所以选B.
7.,所以选D.
8.化为或,所以选B.
9.将左移个单位得,所以选A.
10.直线与椭圆有公共点,所以选B.
11.如图,设,则,
,
,从而,因此与底面所成角的正弦值等于.所以选A.
12.画可行域 可知符合条件的点是:共6个点,故,所以选D.
二、
13.185..
14.60..
15.,由,得
.
16..如图:
如图,可设,又,
.
当面积最大时,.点到直线的距离为.
三、
17.(1)由三角函数的定义知:.
(2)
.
18.(1)设两年后出口额恰好达到危机前出口额的事件为,则.
(2)设两年后出口额超过危机前出口额的事件为,则.
19.(1)设与交于点.
从而,即,又,且
平面为正三角形,为的中点,
,且,因此,平面.
(2)平面,∴平面平面又,∴平面平面
设为的中点,连接,则,
平面,过点作,连接,则.
为二面角的平面角.
在中,.
又.
20.(1)
(2)
又
综上:.
21.(1)的解集为(1,3)
∴1和3是的两根且
|