17.定义在上的函数满足: 查看更多

 

题目列表(包括答案和解析)

定义在(-1,1)上的函数f(x)满足:f(x)-f(y)=f(
x-y
1-xy
)
;当x∈(-1,0)时,有f(x)>0;若P=f(
1
5
) +f(
1
11
) +••+f(
1
r2+r-1
) +
…+f(
1
20092+2009-1
)
,Q=f(
1
2
),R=f(0);则P,Q,R的大小关系为(  )
A、R>Q>PB、P>R>Q
C、R>P>QD、不能确定

查看答案和解析>>

定义在(-1,1)上的函数f(x)满足:f(x)-f(y)=f(
x-y
1-xy
);当x,y∈(-1,0)时,有f(x)>0;若P=f(
1
5
)+f(
1
11
)+…+f(
1
r2+r-1
)+…+f(
1
20122+2012-1
),Q=f(
1
2
),R=f(0).则P,Q,R的大小关系为(  )

查看答案和解析>>

定义在(-1,1)上的函数f(x)满足:
①对任意x1、x2∈(-1,1)都有f(x1)+f(x2)=f(
x1+x2
1+x1x2
)

②当x<0时,f(x)>0.
(1)判断函数f(x)的奇偶性与单调性,并给出证明;
(2)若f(
1
5
)=
1
2
,求f(
1
2
)-f(
1
11
)-f(
1
19
)
的值.

查看答案和解析>>

定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
)
;②当x∈(-1,0)时,f(x)>0.
(Ⅰ)判断f(x)在(-1,1)上的奇偶性,并说明理由;
(Ⅱ)判断函数f(x)在(0,1)上的单调性,并说明理由;
(Ⅲ)若
f(
1
5
) =-
1
2
f(
1
5
) =-
1
2
,试求f(
1
2
)-f(
1
11
)-f(
1
19
)
的值.

查看答案和解析>>

定义在(-1,1)上的函数f(x),同时满足下列两个条件:
①对于任意的x,y∈(-1,1),都有f(x)+f(y)=f(
x+y1+xy
);
②当x∈(-1,0)时,f(x)>0.
(1)求f(0)的值;
(2)判断f(x)在(-1,1)上的奇偶性,并说明理由;
(3)判断f(x)在(0,1)上的单调性,并给出证明.

查看答案和解析>>

一、选择题:

1―5  ACBBD    6―10  BCDAC

二、填空题:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答题:

18.解:(I)

20090506

   (II)由于区间的长度是为,为半个周期。

    又分别取到函数的最小值

所以函数上的值域为。……14分

19.解:(1)该同学投中于球但未通过考核,即投蓝四次,投中二次,且这两次不连续,其概率为                                 …………5分

   (2)在这次考核中,每位同学通过考核的概率为

      ………………10分

    随机变量X服从其数学期望

  …………14分

20.解:(1)设FD的中点为G,则TG//BD,而BD//CE,

    当a=5时,AF=5,BD=1,得TG=3。

    又CE=3,TG=CE。

    *四边形TGEC是平行四边形。      

*CT//EG,TC//平面DEF,………………4分

   (2)以T为原点,以射线TB,TC,TG分别为x,y,z轴,

建立空间直角坐标系,则D(1,0,1),

              ………………6分

    则平面DEF的法向量n=(x,y,z)满足:

 

    解之可得又平面ABC的法向量

m=(0,0,1)

   

   即平面DEF与平面ABC相交所成且为锐角的二面角的余弦值为  ……9分

   (3)由P在DE上,可设,……10分

    则

                   ………………11分

    若CP⊥平面DEF,则

    即

 

 

    解之得:                ……………………13分

    即当a=2时,在DE上存在点P,满足DP=3PE,使CP⊥平面DEF。…………14分

21.解:(1)因为        所以

    椭圆方程为:                          ………………4分

   (2)由(1)得F(1,0),所以。假设存在满足题意的直线l,设l的方程为

   

    代入       ………………6分

    设   ①

                  ……………………8分

    设AB的中点为M,则

   

     ……………………11分

    ,即存在这样的直线l

    当时, k不存在,即不存在这样的直线l;……………………14分

 

 

 

 

22.解:(I) ……………………2分

    令(舍去)

    单调递增;

    当单调递减。    ……………………4分

    为函数在[0,1]上的极大值。        ……………………5分

   (II)由

 ①        ………………………7分

依题意知上恒成立。

都在上单调递增,要使不等式①成立,

当且仅当…………………………11分

   (III)由

,则

上递增;

上递减;

        …………………………16分

 

 


同步练习册答案