已知:如图.直线y=-x+4与x轴相交于点A.与直线y=x相交于点B. (1)求点B的坐标.并判断△OAB的形状. (2)动点P从原点O出发.以每秒1个单位的速度沿着 O→B→A的路线向点A匀速运动(E不与点O.A重合). 过点P分别作PE⊥x轴于E.PF⊥y轴于F.设运动t秒时. 矩形EPFO与△OAB重叠部分的面积为S.求 S与t之间的 函数关系式. (3)当t为何值时.S最大.其最大值为多少? 2010年金平区初中毕业生学业模拟考试 查看更多

 

题目列表(包括答案和解析)

已知:如图,直线y=-x+4与x轴相交于点A,与直线y=x相交于点P.

(1)求点P的坐标.

(2)请判断△OPA的形状并说明理由.

(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B,设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.

求:①S与t之间的函数关系式.

②当t为何值时,S最大,并求出S的最大值.

查看答案和解析>>

已知:如图,直线y=-x+4与x轴相交于点A,与直线y=x相交于点P.

(1)求点P的坐标.

(2)请判断△OPA的形状并说明理由.

(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.

求:①S与t之间的函数关系式.

②当t为何值时,S最大,并求S的最大值.

查看答案和解析>>

已知:如图,⊙轴交于C、D两点,圆心的坐标为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0)

 

 

1.求切线BC的解析式;

2.若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点的坐标;

3.向左移动⊙(圆心始终保持在轴上),与直线BC交于EF,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点 的坐标,若不存在,请说明理由.

 

查看答案和解析>>

已知:如图,⊙轴交于C、D两点,圆心的坐标为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0)

 

 

1.求切线BC的解析式;

2.若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点的坐标;

3.向左移动⊙(圆心始终保持在轴上),与直线BC交于EF,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点 的坐标,若不存在,请说明理由.

 

查看答案和解析>>

已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).

(1)请写出三条与上述抛物线有关的不同类型的结论;

(2)当a=时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;

(3)设上述两条抛物线相交于A,B两点,直线ll1l2都垂直于x轴,l1l2分别经过A,B两点,l在直线l1l2之间,且l与两条抛物线分别交于C,D两点,求线段CD的最大值.

查看答案和解析>>


同步练习册答案