5.如图1.已知四边形与四边形为互相垂直且边长均为2的两个正方形.为中点.则异面直线与所成角的余弦值为 ( ) (C) (D) 查看更多

 

题目列表(包括答案和解析)

 如图1,已知四边形与四边形为互相垂直且边长均为2的两个正方形,中点,则异面直线所成角的余弦值为               (     )

    (A)0          (B)     (C)       (D)

 

查看答案和解析>>

已知椭圆C焦点在x轴上,其长轴长为4,离心率为
3
2

(1)设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围;
(2)如图,过原点O任意作两条互相垂直的直线与椭圆
x2
a2
+
y2
b2
=1
(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件.

查看答案和解析>>

已知直线l:ax-y+
2
-a=0
(a∈R),圆O:x2+y2=4.
(Ⅰ)求证:直线l与圆O相交;
(Ⅱ)判断直线l被圆O截得的弦何时最短?并求出最短弦的长度;
(Ⅲ)如图,已知AC、BD为圆O的两条相互垂直的弦,垂足为M(1,
2
),求四边形ABCD的面积的最大值.

查看答案和解析>>

已知离心率为
12
的椭圆C的中心在坐标原点O,一焦点坐标为(1,0),圆O的方程为x2+y2=7.
(1)求椭圆C的方程,并证明椭圆C在圆O内;
(2)过椭圆C上的动点P作互相垂直的两条直线l1,l2,l1与圆O相交于点A,C,l2与圆O相交于点B,D(如图),求四边形ABCD的面积的最大值.

查看答案和解析>>

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点到长轴的两个端点的距离分别为2+
3
和2-
3

(1)求椭圆的方程;
(2)设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)如图,过原点O任意作两条互相垂直的直线与椭圆
x2
a2
+
y2
b2
=1
(a>b>0)交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件.

查看答案和解析>>


同步练习册答案