8.若不等式1+成立.则n的最小值是( ) A.7 B 8 C 9 D 10 查看更多

 

题目列表(包括答案和解析)

若不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N+)
成立,则n的最小值是(  )
A、7B、8C、9D、10

查看答案和解析>>

若不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N+)
成立,则n的最小值是(  )
A.7B.8C.9D.10

查看答案和解析>>

已知函数f(x)=x-1-lnx.
(1)求函数f(x)的最小值;
(2)求证:当n∈N*时,e1+
1
2
+
1
3
+…+
1
n
>n+1

(3)对于函数h(x)和g(x)定义域上的任意实数x,若存在常数k,b,使得不等式h(x)≥kx+b和g(x)≤kx+b都成立,则称直线y=kx+b是函数h(x)与g(x)的“分界线”.设函数h(x)=
1
2
x2
,g(x)=e[x-1-f(x)],试问函数h(x)与g(x)是否存在“分界线”?若存在,求出常数k,b的值;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x-1-lnx.
(1)求函数f(x)的最小值;
(2)求证:当n∈N*时,数学公式
(3)对于函数h(x)和g(x)定义域上的任意实数x,若存在常数k,b,使得不等式h(x)≥kx+b和g(x)≤kx+b都成立,则称直线y=kx+b是函数h(x)与g(x)的“分界线”.设函数数学公式,g(x)=e[x-1-f(x)],试问函数h(x)与g(x)是否存在“分界线”?若存在,求出常数k,b的值;若不存在,说明理由.

查看答案和解析>>

对于数列{an},定义数列{bm}如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)设{an}是单调递增数列,若a3=4,则b4=
 

(Ⅱ)若数列{an}的通项公式为an=2n-1,n∈N*,则数列{bm}的通项是
 

查看答案和解析>>


同步练习册答案