已知均在椭圆上.直线.分别过椭圆 的左右焦点..当时.有. (I)求椭圆的方程; (II)设P是椭圆上的任一点.为圆的任一条直径. 求的最大值. 楠杆高中2010年三轮复习模拟试题四参考解答及评分标准 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知均在椭圆上,直线分别过椭圆的左右焦点,当时,有.

   (I)求椭圆的方程;

   (II)设P是椭圆上的任一点,为圆的任一条直径,求的最大值.

查看答案和解析>>

(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,点分别是椭圆的左、右焦点,在直线(分别为椭圆的长半轴和半焦距的长)上的点

 

,满足线段的中垂线过点.过原点且斜率均存在的直线互相垂直,且截椭圆所得的弦长分别为

(Ⅰ)求椭圆的方程;

(Ⅱ)求的最小值及取得最小值时直线的方程.

 

查看答案和解析>>

(本小题满分12分)

        已知椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从它们每条曲线上至少取两个点,将其坐标记录于下表中:   

x

5

4

y

2

0

-4

 

(Ⅰ)求C1和C2的方程;

   (Ⅱ)过点S(0,-)且斜率为k的动直线l交椭圆C1于A、B两点,在y轴上是否存在定点D,使以线段AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.

 

 

查看答案和解析>>

(本小题满分12分)

已知椭圆方程为,P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.

(Ⅰ)求M点的轨迹T的方程;

(Ⅱ)已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

(本小题满分12分)

已知椭圆方程为,P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.

(Ⅰ)求M点的轨迹T的方程;

(Ⅱ)已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>


同步练习册答案