题目列表(包括答案和解析)
已知函数在点处连续,则常数的值是
A.2 B.3 C.4 D.5
已知函数在R上满足,则曲线在点处的切线方程是
A. B. C. D.
(本题13分)已知函数
(1)已知一直线经过原点且与曲线相切,求的直线方程;
(2)若关于的方程有两个不等的实根,求实数的取值范围。
(本题12分)定义在R上的函数,已知在上有最小值3。
(1)求的单调区间;
(2)求在上的最大值。
(本题12分)已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.
(1) 第一小组做了三次实验,求实验成功的平均次数;
(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望;
(3)两个小组分别进行2次试验,求至少有2次实验成功的概率.
1.解析:,故选A。
2.解析:∵
,
故选B。
3.解析:由,得,此时,所以,,故选C。
4.解析:显然,若与共线,则与共线;若与共线,则,即,得,∴与共线,∴与共线是与共线的充要条件,故选C。
5.解析:设公差为,由题意得,;,解得或,故选C。
6.解析:∵双曲线的右焦点到一条渐近线的距离等于焦距的,∴,又∵,∴,∴,∴双曲线的离心率是。故选B.
7.解析:∵、为正实数,∴,∴;由均值不等式得恒成立,,故②不恒成立,又因为函数在是增函数,∴,故恒成立的不等式是①③④。故选C.
8.解析:∵,∴在区间上恒成立,即在区间上恒成立,∴,故选D。
9.解析:∵
,此函数的最小值为,故选C。
10.解析:如图,∵正三角形的边长为,∴,∴,又∵,∴,故选D。
11.解析:∵在区间上是增函数且,∴其反函数在区间上是增函数,∴,故选A
12.解析:如图,①当或时,圆面被分成2块,涂色方法有20种;②当或时,圆面被分成3块,涂色方法有60种;
③当时,圆面被分成4块,涂色方法有120种,所以m的取值范围是,故选A。
13.解析:做出表示的平面区域如图,当直线经过点时,取得最大值5。
14.解析:∵,∴时,,又时,满足上式,因此,,
∴。
15.解析:设正四面体的棱长为,连,取的中点,连,∵为的中点,∴∥,∴或其补角为与所成角,∵,,∴,∴,又∵,∴,∴与所成角的余弦值为。
16.解析:∵,∴,∵点为的准线与轴的交点,由向量的加法法则及抛物线的对称性可知,点为抛物线上关于轴对称的两点且做出图形如右图,其中为点到准线的距离,四边形为菱形,∴,∴,∴,∴,∴,∴向量与的夹角为。
17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分
∴,,………4分
(Ⅱ)∵,,∴,∴,………………………6分
又∵,∴,∴,………………………8分
∴。………………………10分
18.解析:(Ⅰ)∵,∴;……………………理3文4分
(Ⅱ)∵三科会考不合格的概率均为,∴学生甲不能拿到高中毕业证的概率;……………………理6文8分
(Ⅲ)∵每科得A,B的概率分别为,∴学生甲被评为三好学生的概率为。……………………12分
(理)∵,,,。……………………9分
∴的分布列如下表:
0
1
2
3
∴的数学期望。……………………12分
19.(12分)解析:(Ⅰ)时,
,,
由得, 或 ………3分
+
0
-
0
+
递增
极大值
递减
极小值
递增
, ………………………6分
(Ⅱ)在定义域上是增函数,
对恒成立,即
………………………9分
又(当且仅当时,)
………………………4分
20.解析:(Ⅰ)∵∥,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴。………………………4分
(Ⅱ)∵平面,∴,,∴为二面角的平面角,………………………6分
,,∴,又∵平面,,∴,∴二面角的正切值的大小为。………………………8分
(Ⅲ)过点做∥,交于点,∵平面,∴为在平面内的射影,∴为与平面所成的角,………………………10分
∵,∴,又∵∥,∴和与平面所成的角相等,∴与平面所成角的正切值为。………………………12分
解法2:如图建立空间直角坐标系,(Ⅰ)∵,,∴点的坐标分别是,,,∴,,设,∵平面,∴,∴,取,∴,∴。………………………4分
(Ⅱ)设二面角的大小为,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小为。………………………8分
(Ⅲ)设与平面所成角的大小为,∵平面的法向量是,,∴,∴,∴与平面所成角的正切值为。………………………12分
21.(Ⅰ) 解析:如图,设右准线与轴的交点为,过点
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com