设数列的通项公式为. 数列定义如下:对于正整数m.是使得不等式成立的所有n中的最小值. (Ⅰ)若.求, (Ⅱ)若.求数列的前2m项和公式 查看更多

 

题目列表(包括答案和解析)

 设数列的通项公式为. 数列定义如下:对于正整数是使得不等式成立的所有n中的最小值.

(1)若,求

(2)若,求数列的前项和公式;   

(3)是否存在,使得?如果存在,求的取值范围;如果不存在,请说明理由.

 

 

 

 

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。

   (1)若,求b3

   (2)若,求数列的前2m项和公式;

   (3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>


同步练习册答案