题目列表(包括答案和解析)
(本小题满分13分)
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的
左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭
圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点
分别 为和
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?
若存在,求的值;若不存在,请说明理由.
(本小题满分13分)设椭圆的左、右焦点分别为F1、F2,上顶点为A,在x轴上有一点B,满足且F1为BF2的中点.
(Ⅰ)求椭圆 C的离心率;
(Ⅱ)若过A、B、F2三点的圆恰好与直线相切,判断椭圆C和直线的位置关系.
(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若与均不重合,设直线与的斜率分别为,证明:为定值;
(Ⅲ)为过且垂直于轴的直线上的点,若,求点的轨迹方程,并说明轨迹是什么曲线.
.(本小题满分13分)
如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:y=-1上,且椭圆的离心率e =.(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN
(本小题满分13分)
如图,椭圆的顶点为,焦点为,.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,是与n垂直相交于P点,与椭圆相交于A, B两点的直线,.是否存在上述直线使成立?若存在,求出直线的方程;并说出;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com